Studija Glavne ocjene prihvatljivosti zahvata za ekološku mrežu HE OMBLA

Knjiga 3.

Bioraznolikost špiljskih objekata na širem području zahvata

Zagreb, ožujak 2015.
| NARUČITELJ | Hrvatska elektroprivreda d.d.  
           | Ulica grada Vukovara 37, 10 000 Zagreb |
|------------|-----------------------------------|
| IZRAĐIVAČ  | OIKON d.o.o. Institut za primijenjenu ekologiju  
           | (vodeći član)  
           | Trg senjskih uskoka 1-2, 10 000 Zagreb |
|            | Hrvatski prirodoslovni muzej  
           | Demetrova 1, Zagreb |
|            | GEONATURA d.o.o. za stručne poslove zaštite prirode  
           | Trg senjskih uskoka 1-2, 10 000 Zagreb |
| PROJEKT    | Istraživanje špiljskih staništa i izvorišnih područja šireg dubrovačkog područja s ciljem vrednovanja bioraznolikosti i ocjena prihvatljivosti izgradnje hidroenergetskih objekata |
| VRSTA DOKUMENTACIJE | GOPZEM HE Omla – Knjiga 3: Bioraznolikost špiljskih objekata na širem području zahvata |
| BROJ UGOVORA | 948-14 |
| VODITELJ PROJEKTA | Prof. dr. sc. Oleg Antonić |
| VODITELJICA GOPZEM | Fanica Kljaković Gašpić, mag. biol. |
| AUTORI IZVJEŠTAJA | Mr. sc. Roman Ozimec  
                       | Branko Jažić  
                       | Dr. sc. Iva Mihoci  
                       | Nikola Hanžek, mag. oecol. et prof. nat.  
                       | Goran Rnjak, bacc. ing. aedif.  
                       | Dr. sc. Marin Grigurev  
                       | Damir Lacković, dipl.ing.geol.  
                       | Neven Matočec |
| KONTROLA KVALITETE | Dr. sc. Vladimir Kušan |
| ODGOVORNE OSOBE | Dalibor Hatić, mag. ing. silv. (za Oikon d.o.o.)  
                       | Dr. sc. Hrvoje Peternel (za Geonatura d.o.o.)  
                       | Prof. dr. sc. Tatjana Vlahović (za Hrvatski prirodoslovni muzej) |
**Popis članova tima za istraživanje kopnenih špiljskih staništa (abecednim redom).**

<table>
<thead>
<tr>
<th>Član tima (prezime, ime)</th>
<th>Zvanje</th>
<th>Primarna uloga u timu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Baričević Lana</td>
<td>Mr. biol.</td>
<td>Biospeleolog</td>
</tr>
<tr>
<td>2 Basara Damir</td>
<td>Instruktur speleologije</td>
<td>Speleolog, topograf</td>
</tr>
<tr>
<td>3 Cvitanović Hrvoje</td>
<td>Instruktur speleologije</td>
<td>Speleolog, topograf</td>
</tr>
<tr>
<td>4 Ćukušić Andela</td>
<td>Mr. biol.</td>
<td>Biospeleolog</td>
</tr>
<tr>
<td>5 Dražina Tvrtko</td>
<td>Dr. sc.</td>
<td>Biospeleolog</td>
</tr>
<tr>
<td>6 Hanžek Nikola</td>
<td>Mr. biol.</td>
<td>Biospeleolog</td>
</tr>
<tr>
<td>7 Kovačević Alan</td>
<td>Instruktur speleologije</td>
<td>Speleolog, topograf</td>
</tr>
<tr>
<td>8 Matočec Neven</td>
<td>Specijalist-mikolog</td>
<td>Biospeleolog</td>
</tr>
<tr>
<td>9 Ozimec Roman</td>
<td>Mr. sc. biol.</td>
<td>Biospeleolog, fotograf</td>
</tr>
<tr>
<td>10 Polić Gordon</td>
<td>Speleolog</td>
<td>Speleolog, fotograf</td>
</tr>
<tr>
<td>11 Rade Predrag</td>
<td>Speleolog</td>
<td>Speleolog, biospeleolog</td>
</tr>
<tr>
<td>12 Rnjak Goran</td>
<td>Instruktur speleologije</td>
<td>Speleolog, topograf</td>
</tr>
<tr>
<td>13 Slapnik Rajko</td>
<td>Dr. sc.</td>
<td>Biospeleolog</td>
</tr>
<tr>
<td>14 Valentinčić Jana</td>
<td>tehničar</td>
<td>Biospeleolog</td>
</tr>
</tbody>
</table>

**Popis članova tima za istraživanje vodenih špiljskih staništa (abecednim redom).**

<table>
<thead>
<tr>
<th>RB</th>
<th>Član tima (prezime, ime)</th>
<th>Zvanje</th>
<th>Primarna uloga u timu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jalžić Branko</td>
<td>Instruktur speleologije</td>
<td>Speleorionilac, biospeleolog</td>
</tr>
<tr>
<td>2</td>
<td>Jalžić Vedran</td>
<td>Instruktur speleologije</td>
<td>Speleorionilac, topograf</td>
</tr>
<tr>
<td>3</td>
<td>Kirin Alen</td>
<td>Speleolog</td>
<td>Speleolog, biospeleolog</td>
</tr>
<tr>
<td>4</td>
<td>Kovač Konrad Petra</td>
<td>Instruktur ronjenja</td>
<td>Speleorionilac, topograf</td>
</tr>
<tr>
<td>5</td>
<td>Mihoć Tamara</td>
<td>Mr. biol.</td>
<td>Biospeleolog</td>
</tr>
<tr>
<td>6</td>
<td>Vučić Vedran</td>
<td>Ronilac</td>
<td>Speleorionilac</td>
</tr>
</tbody>
</table>

**Popis članova međunarodnog ekspertnog taksonomskog tima (abecednim redom).**

<table>
<thead>
<tr>
<th>Član tima (prezime, ime)</th>
<th>Zvanje</th>
<th>Determinirana skupina</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Crnčan Petar</td>
<td>Mr. sc.</td>
<td>Gastropoda</td>
</tr>
<tr>
<td>2 Dražina Tvrtko</td>
<td>Dr. sc.</td>
<td>Diplopoda</td>
</tr>
<tr>
<td>3 Fišer Cene</td>
<td>Doc. dr. sc.</td>
<td>Amphipoda</td>
</tr>
<tr>
<td>4 Jalžić Branko</td>
<td>viši muz. tehničar</td>
<td>Coleoptera</td>
</tr>
<tr>
<td>5 Jugović Jure</td>
<td>Doc. dr. sc.</td>
<td>Decapoda</td>
</tr>
<tr>
<td>6 Karaman Gordan</td>
<td>Dr. sc.</td>
<td>Amphipoda</td>
</tr>
<tr>
<td>7 Karaman Ivo</td>
<td>Dr. sc.</td>
<td>Isopoda terrestria, Opiliones</td>
</tr>
<tr>
<td>8 Kovač Lubomir</td>
<td>Prof. dr. sc.</td>
<td>Collembola</td>
</tr>
<tr>
<td>9 Matočec Neven</td>
<td>institutski tehničar</td>
<td>Fungi</td>
</tr>
<tr>
<td>10 Ozimec Roman</td>
<td>Mr. sc.</td>
<td>Tricladida, Oligochaeta, Diplura, Acari, Opiliones, Araneae, Pseudoscorpiones</td>
</tr>
<tr>
<td>11 Pavičević Dragan</td>
<td>institutski tehničar</td>
<td>Coleoptera</td>
</tr>
<tr>
<td>12 Popović Momčilo</td>
<td>institutski tehničar</td>
<td>Coleoptera, Staphylinida</td>
</tr>
<tr>
<td>13 Sket Boris</td>
<td>Prof. dr. sc.</td>
<td>Hirudinea, Decapoda, Isopoda aquatica</td>
</tr>
<tr>
<td>14 Slapnik Rajko</td>
<td>Dr. sc.</td>
<td>Gastropoda, Bivalvia, Polychaeta</td>
</tr>
</tbody>
</table>
Sadržaj:

1 Uvod ........................................................................................................................................ 7
2 Metodologija istraživanja .......................................................................................................... 9
   2.1 Terenski rad ......................................................................................................................... 10
   2.2 Kabinetski rad .................................................................................................................... 19
3 Opis i analiza istraživanih speleoloških objekata (SO) .......................................................... 22
   3.1 Dinarski krš na području Dubrovačko - neretvanske županije ........................................... 22
   3.2 Geološka osnova, hidrogeološka funkcija i geomorfologija dijela špilja i jama šireg
dubrovačkog područja ................................................................................................................ 24
        3.2.1 Izvori, ponori i drugi hidrološki aktivni speleološki objekti ........................................ 24
        3.2.2 Hidrološki neaktivni speleološki objekti ................................................................... 25
        3.2.3 Speleološki objekti s hidrološki aktivnim i neaktivnim kanalima ............................... 25
        3.2.4 Ilustrativni primjeri ..................................................................................................... 25
   3.3 Pregled istraživanih speleoloških objekata .......................................................................... 39
   3.4 Analiza istraživanih speleoloških objekata .......................................................................... 43
        3.4.1 Distribucija speleoloških objekata po regijama Županije .............................................. 43
        3.4.2 Podjela speleoloških objekata prema geomorfološkom tipu ...................................... 44
        3.4.3 Podjela speleoloških objekata prema dimenzijama ..................................................... 45
        3.4.4 Podjela speleoloških objekata prema nadmorskoj visini ulaza ................................... 46
        3.4.5 Speleološki objekti u okviru ekološke mreže Natura 2000 ........................................... 47
4 Bioraznolikost istraživanih špijeljskih objekata ................................................................. 48
   4.1 Uvod ...................................................................................................................................... 48
   4.2 Popis utvrđenih špiljskih svojtv po speleološkim objektima .............................................. 51
        4.2.1 Aragonka špilja ........................................................................................................... 51
        4.2.2 Banova ljut špilja ........................................................................................................ 51
        4.2.3 Bezdanka* .................................................................................................................... 52
        4.2.4 Bunar na zemlji Ilije Plećaša ...................................................................................... 52
        4.2.5 Bunar na zemlji Mire Volarevića ............................................................................... 52
        4.2.6 Bunar na zemlji Vice Jakića ....................................................................................... 52
        4.2.7 Čekrk jama ................................................................................................................... 52
        4.2.8 Debeljat špilja ............................................................................................................. 53
        4.2.9 Donji izvor u Glušcima ............................................................................................... 53
        4.2.10 Đurovića jama* .......................................................................................................... 53
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.11</td>
<td>Glogova jama*</td>
<td>54</td>
</tr>
<tr>
<td>4.2.12</td>
<td>Gornji izvor u Glušcima</td>
<td>54</td>
</tr>
<tr>
<td>4.2.13</td>
<td>Gusarska spilja</td>
<td>54</td>
</tr>
<tr>
<td>4.2.14</td>
<td>Izvor Badžula</td>
<td>55</td>
</tr>
<tr>
<td>4.2.15</td>
<td>Izvor Bijeli Vir</td>
<td>55</td>
</tr>
<tr>
<td>4.2.16</td>
<td>Izvor Bosna</td>
<td>56</td>
</tr>
<tr>
<td>4.2.17</td>
<td>Izvor Čatrnja</td>
<td>56</td>
</tr>
<tr>
<td>4.2.18</td>
<td>Izvor Duboka Ljuta</td>
<td>56</td>
</tr>
<tr>
<td>4.2.19</td>
<td>Izvor između Točionika i Lisca</td>
<td>56</td>
</tr>
<tr>
<td>4.2.20</td>
<td>Izvor Lunčijata</td>
<td>56</td>
</tr>
<tr>
<td>4.2.21</td>
<td>Izvor Ljute Konavoske</td>
<td>56</td>
</tr>
<tr>
<td>4.2.22</td>
<td>Izvor na zemlji Grge Jurić</td>
<td>57</td>
</tr>
<tr>
<td>4.2.23</td>
<td>Izvor Obli vir</td>
<td>57</td>
</tr>
<tr>
<td>4.2.24</td>
<td>Izvor Palata</td>
<td>57</td>
</tr>
<tr>
<td>4.2.25</td>
<td>Izvor Prud</td>
<td>57</td>
</tr>
<tr>
<td>4.2.26</td>
<td>Izvor Smokovijenac</td>
<td>57</td>
</tr>
<tr>
<td>4.2.27</td>
<td>Izvor Studenac</td>
<td>57</td>
</tr>
<tr>
<td>4.2.28</td>
<td>Izvor špilja kod bunkera</td>
<td>58</td>
</tr>
<tr>
<td>4.2.29</td>
<td>Izvor špilja kod kapelice Sv. Mihovil</td>
<td>58</td>
</tr>
<tr>
<td>4.2.30</td>
<td>Izvor špilja poviše Oblog vira</td>
<td>58</td>
</tr>
<tr>
<td>4.2.31</td>
<td>Izvor Topolac</td>
<td>58</td>
</tr>
<tr>
<td>4.2.32</td>
<td>Izvor u Mislinama</td>
<td>58</td>
</tr>
<tr>
<td>4.2.33</td>
<td>Izvor u Mliništu</td>
<td>58</td>
</tr>
<tr>
<td>4.2.34</td>
<td>Izvor u selu Duba Konavoska</td>
<td>58</td>
</tr>
<tr>
<td>4.2.35</td>
<td>Izvor Ugor</td>
<td>59</td>
</tr>
<tr>
<td>4.2.36</td>
<td>Izvor Vrilo</td>
<td>59</td>
</tr>
<tr>
<td>4.2.37</td>
<td>Izvor Žeginjac</td>
<td>59</td>
</tr>
<tr>
<td>4.2.38</td>
<td>Izvorište Slavljjan</td>
<td>59</td>
</tr>
<tr>
<td>4.2.39</td>
<td>Jama kod groblja</td>
<td>60</td>
</tr>
<tr>
<td>4.2.40</td>
<td>Jama na gomilama</td>
<td>60</td>
</tr>
<tr>
<td>4.2.41</td>
<td>Jama na Kunku</td>
<td>60</td>
</tr>
<tr>
<td>4.2.42</td>
<td>Jama na vrh Krčevina</td>
<td>60</td>
</tr>
<tr>
<td>4.2.43</td>
<td>Jama na vrh Prodoli</td>
<td>60</td>
</tr>
<tr>
<td>4.2.44</td>
<td>Jama na vrh Vrguda</td>
<td>61</td>
</tr>
<tr>
<td>4.2.45</td>
<td>Jama pod Brk</td>
<td>61</td>
</tr>
<tr>
<td>4.2.46</td>
<td>Jama u Predolcu</td>
<td>61</td>
</tr>
<tr>
<td>4.2.47</td>
<td>Jama u Zabiradu</td>
<td>62</td>
</tr>
<tr>
<td>4.2.48</td>
<td>Jama uz stazu na Sv. Nikoli</td>
<td>62</td>
</tr>
<tr>
<td>4.2.49</td>
<td>Jama za Rasohama</td>
<td>62</td>
</tr>
<tr>
<td>4.2.50</td>
<td>Jama Zadubravica</td>
<td>63</td>
</tr>
<tr>
<td>4.2.51</td>
<td>Japaga iznad Kopren dola</td>
<td>63</td>
</tr>
<tr>
<td>4.2.52</td>
<td>Kaverna 167</td>
<td>63</td>
</tr>
<tr>
<td>4.2.53</td>
<td>Kaverna 180</td>
<td>63</td>
</tr>
<tr>
<td>4.2.54</td>
<td>Kaverna 183</td>
<td>64</td>
</tr>
<tr>
<td>4.2.55</td>
<td>Kaverna 781</td>
<td>64</td>
</tr>
<tr>
<td>4.2.56</td>
<td>Kaverna Duboka Ljuta</td>
<td>65</td>
</tr>
<tr>
<td>4.2.57</td>
<td>Kornjatuša jama</td>
<td>65</td>
</tr>
<tr>
<td>4.2.58</td>
<td>Krivača špilja</td>
<td>66</td>
</tr>
<tr>
<td>4.2.59</td>
<td>Kukova peć</td>
<td>66</td>
</tr>
<tr>
<td>4.2.60</td>
<td>Kuna špilja</td>
<td>67</td>
</tr>
<tr>
<td>4.2.61</td>
<td>Lokva Vidohovo</td>
<td>68</td>
</tr>
<tr>
<td>4.2.62</td>
<td>Mali izvor u selu Glušci</td>
<td>68</td>
</tr>
<tr>
<td>4.2.63</td>
<td>Močiljska špilja*</td>
<td>68</td>
</tr>
<tr>
<td>4.2.64</td>
<td>Morska špilja u Rafovoj uvali 1</td>
<td>69</td>
</tr>
<tr>
<td>4.2.65</td>
<td>Pasja jama</td>
<td>69</td>
</tr>
<tr>
<td>4.2.66</td>
<td>Pasja špilja</td>
<td>69</td>
</tr>
<tr>
<td>4.2.67</td>
<td>Pećina na Velikom Humu</td>
<td>69</td>
</tr>
<tr>
<td>4.2.68</td>
<td>Špilja u Gaju</td>
<td>69</td>
</tr>
<tr>
<td>4.2.69</td>
<td>Plješina jama</td>
<td>70</td>
</tr>
<tr>
<td>4.2.70</td>
<td>Ponor Ljute</td>
<td>70</td>
</tr>
<tr>
<td>4.2.71</td>
<td>Predpeć</td>
<td>70</td>
</tr>
<tr>
<td>4.2.72</td>
<td>Rafova špilja</td>
<td>70</td>
</tr>
<tr>
<td>4.2.73</td>
<td>Romića vrilo</td>
<td>70</td>
</tr>
<tr>
<td>4.2.74</td>
<td>Sklenica špilja</td>
<td>71</td>
</tr>
<tr>
<td>4.2.75</td>
<td>Sumporača špilja velika</td>
<td>71</td>
</tr>
<tr>
<td>4.2.76</td>
<td>Šipun špilja</td>
<td>71</td>
</tr>
<tr>
<td>4.2.77</td>
<td>Šolkina jama ..............................................................</td>
<td>72</td>
</tr>
<tr>
<td>4.2.78</td>
<td>Špajtarica ....................................................................</td>
<td>73</td>
</tr>
<tr>
<td>4.2.79</td>
<td>Špilja 1 u uvali Hodovlja ...............................................</td>
<td>73</td>
</tr>
<tr>
<td>4.2.80</td>
<td>Špilja ispod krsta ........................................................</td>
<td>73</td>
</tr>
<tr>
<td>4.2.81</td>
<td>Špilja iznad crkvice Gospe od Luga ..................................</td>
<td>74</td>
</tr>
<tr>
<td>4.2.82</td>
<td>Špilja iznad Kopren dola ................................................</td>
<td>74</td>
</tr>
<tr>
<td>4.2.83</td>
<td>Špilja iznad špilje iznad crkvice Gospe od Luga ..................</td>
<td>75</td>
</tr>
<tr>
<td>4.2.84</td>
<td>Špilja Jezero ..................................................................</td>
<td>75</td>
</tr>
<tr>
<td>4.2.85</td>
<td>Špilja iznad Omble ...........................................................</td>
<td>76</td>
</tr>
<tr>
<td>4.2.86</td>
<td>Špilja kod Majkova u flišu ...............................................</td>
<td>76</td>
</tr>
<tr>
<td>4.2.87</td>
<td>Špilja na vrh Toraca ..........................................................</td>
<td>76</td>
</tr>
<tr>
<td>4.2.88</td>
<td>Špilja od Punta ...............................................................</td>
<td>77</td>
</tr>
<tr>
<td>4.2.89</td>
<td>Vrbočulja špilja ..............................................................</td>
<td>77</td>
</tr>
<tr>
<td>4.2.90</td>
<td>Špilja za Gromačkom vlakom ..........................................</td>
<td>78</td>
</tr>
<tr>
<td>4.2.91</td>
<td>Tihinja špilja ..................................................................</td>
<td>79</td>
</tr>
<tr>
<td>4.2.92</td>
<td>Topli izvor u Zatonu malom .............................................</td>
<td>79</td>
</tr>
<tr>
<td>4.2.93</td>
<td>Traverza kod Miljković staja ..........................................</td>
<td>79</td>
</tr>
<tr>
<td>4.2.94</td>
<td>Tunel iznad Šumeta 1 .......................................................</td>
<td>80</td>
</tr>
<tr>
<td>4.2.95</td>
<td>Tunel iznad Šumeta 2 .......................................................</td>
<td>80</td>
</tr>
<tr>
<td>4.2.96</td>
<td>Tunel iznad Šumeta 3 .......................................................</td>
<td>80</td>
</tr>
<tr>
<td>4.2.97</td>
<td>Tunel iznad Šumeta 4 .......................................................</td>
<td>80</td>
</tr>
<tr>
<td>4.2.98</td>
<td>Tunel Konavosko polje-more ..........................................</td>
<td>80</td>
</tr>
<tr>
<td>4.2.99</td>
<td>Tunel Mihanići 1 ............................................................</td>
<td>80</td>
</tr>
<tr>
<td>4.2.100</td>
<td>Tunel Mihanići 2 ............................................................</td>
<td>80</td>
</tr>
<tr>
<td>4.2.101</td>
<td>Tunel Mihanići 3 ............................................................</td>
<td>81</td>
</tr>
<tr>
<td>4.2.102</td>
<td>Tunel na Srđu ...............................................................</td>
<td>81</td>
</tr>
<tr>
<td>4.2.103</td>
<td>Velika jama poviše Tornja ..............................................</td>
<td>81</td>
</tr>
<tr>
<td>4.2.104</td>
<td>Velika peć 2 ..................................................................</td>
<td>81</td>
</tr>
<tr>
<td>4.2.105</td>
<td>Vija peć .......................................................................</td>
<td>81</td>
</tr>
<tr>
<td>4.2.106</td>
<td>Vilenska peć ..................................................................</td>
<td>82</td>
</tr>
<tr>
<td>4.2.107</td>
<td>Sustav vilina špilja – izvor Omble ...................................</td>
<td>82</td>
</tr>
<tr>
<td>4.2.108</td>
<td>Vilinska špilja ...............................................................</td>
<td>82</td>
</tr>
<tr>
<td>4.2.109</td>
<td>Vir kod kapelice Sv. Mihovila .........................................</td>
<td>83</td>
</tr>
</tbody>
</table>
4.2.110 Vištičina jama ........................................................................................................ 83
4.2.111 Vranja jama ......................................................................................................... 84
4.2.112 Vranja peć .......................................................................................................... 84
4.2.113 Vrulja Morašnica ............................................................................................... 85
4.2.114 Vrulja Stupski jaz ............................................................................................... 85
4.2.115 Zmajevo peć ....................................................................................................... 85
4.3 Popis utvrđene faune pravih špiljskih vrsta .................................................................. 86
4.4 Analiza istraženosti podzemne bioraznolikosti speleoloških objekata DNŽ .......... 104
  4.4.1 Pregled dosadašnjih istraživanja ........................................................................ 104
  4.4.2 Analiza bioraznolikosti špiljskih organizama istraživanog područja .................. 110
  4.4.3 Analiza ostvarenih nalaza ciljanih špiljskih vrsta .............................................. 113
  4.4.4 Mikobiota (gljive) ................................................................................................ 117
    4.4.4.1 Globalna i regionalna istraženost gljiva krškog podzemlja .............................. 117
    4.4.4.2 Raznolikost i životne strategije gljiva krškog podzemlja ............................... 118
    4.4.4.3 Gljive sustava Vilina špilja - izvor Omble ...................................................... 119
  4.4.5 Fauna .................................................................................................................. 128
5 Preliminarna procjena bioraznolikosti špiljskih staništa dubrovačkog područja .......... 167
6 Zaključak .................................................................................................................... 176
7 LITERATURA .............................................................................................................. 177
  7.1 Objavljene reference .............................................................................................. 177
  7.2 Nepublicirani radovi (Stručni Elaborati; diplomski, magistarski i doktorski teze) .... 191
8 Prilozi .......................................................................................................................... 193
  8.1 Kartografski prikaz istraživanih speleoloških objekata ...................................... 195
  8.2 Katastarski listovi istraživanih objekata ............................................................... 197
1 Uvod


U isto vrijeme ovo područje se koristi u hidroenergetске svrhe (HE Čapljina, HE Dubrovnik 1) te su u planu daljnji hidroenergetski zahvati (HE Ombla; HE Dubrovnik 2). Prije opsežnih hidrotehničkih zahvata u prirodi obavezuje je obaviti prethodna istraživanja utjecaja zahvata na sastavnice prirode, pa su i u ovom slučaju provedena opsežna speleološka i biospeleološka istraživanja. Brojne do sada utvrđene i opisane svojte su sa svega nekoliko, ponekad i jednog jedinog nalazišta, a neke i na osnovi svega nekoliko primjeraka. Uz to, na području županije vjerojatno postoje speleološki objekti koji još nisu otkriveni te za ovo područje još neutvrđene ili znanstveno neopisane vrste špiljske faune. Time je i veća obveza da se provedu speleološka i biospeleološka istraživanja te da se uspostavi Katastar podzemnih objekata u županiji, kao izvor podataka i temelj za nadgradnju znanja o njezinom speleološkom i biospeleološkom bogatstvu te za optimalno planiranje korištenja prirodnih resursa u budućnosti.

Kako bi se u slučaju izgradnje ovih hidroenergetskih zahvata moglo vrednovati njihove utjecaje na bioraznolikost špiljskih staništa šireg područja, potrebno je obaviti sustavno bioekološko istraživanje speleoloških objekata na tom području te utvrditi njihovo nulto stanje obzirom na bioraznolikost i djelujuće ekološke faktore. Stoga je Hrvatska elektroprivreda d.d. inicirala i financirala projekt: Istraživanje špiljskih staništa i izvorišnih područja šireg dubrovačkog područja s ciljem vrednovanja bioraznolikosti i ocjena prihvatljivosti izgradnje hidroenergetskih objekata kojem je osnovni cilj sustavno biospeleološko vrednovanje završnog kopnenog područja jadranskog sliva na području južne biogeografske dinarske regije, odnosno Dubrovačko-neretvanske županije (DNŽ) s posebnim osvrtom na potencijalni utjecaj hidroenergetskih zahvata.

U Knjizi 3 daje se pregled rezultata terenskih istraživanja i laboratorijskih obrada u prvoj godini istraživanja (2014.). Ti rezultati ujedno su i podruga za aktualnu Glavnu ocjenu prihvatljivosti zahvata HE Ombla na ekološku mrežu koja se izvodi u sklopu istog projekta. U vezi s time, ovdje je prikladno istaknuti kako istraživanje špiljskih staništa, koje se u sklopu projekta obavlja, nije obuhvatio sustav Vilina špilja – izvor Omble koji se nalazi na lokaciji planirane podzemne hidroelektrane. Naime, taj špiljski sustav jedan je od najintenzivnije istraživanih podzemnih lokaliteta u Hrvatskoj, dijelom zbog toga što je već više desetljeća objekt proučavanja prirodoslovaca zbog relativno lake dostupnosti, a dijelom zato što je bio predmetom intenzivnih i sustavnih biospeleoloških istraživanja u ranijoj ocjeni.
utjecaja HE Ombla na ekološku mrežu (Elektroprojekt, 2012.). Stoga se težište istraživanja špiljskih staništa u ovom projektu stavilo na druge podzemne objekte, s ciljem da se prikupe podaci koji su usporedivi s onima koji već postoje za špiljski sustav Vilina špilja – izvor Omble i dobije jasnija slika o ukupnoj podzemnoj bioraznolikosti dubrovačkog područja te spomenutom detaljnom komparativnom analizom realno valorizira područje sustava Vilina špilja-izvor Omble.
2 Metodologija istraživanja

Prilikom provedbe projekta korištene su terenske i kabinetske metode istraživanja. Pripremne kabinetske metode sastojale su se od prikupljanja podataka i pripreme opreme potrebne za optimalno istraživanje. Istraživanje su provodili timovi speleologa, speleoroncola i biologa. Istraživanja su podijeljena na akvatička istraživanja, kojima su primarno speleoronilačkim tehnikama obavljena istraživanja vodenih podzemnih staništa te terestrička istraživanja, kojima su primarno speleološkim tehnikama svladani kopneni podzemni prostori, kako bi u svim podzemnim staništima bila obavljena biospeleološka istraživanja.

Istraživački timovi su bili podijeljeni po svojim zaduženjima na:

a) tim za fizičko svladavanje speleološkog objekta, posebno za svladavanje vertikalnih speleoloških objekata, a posebno na speleoronilački tim;

b) tim za topografsko snimanje kojem je cilj bilo mjerenje smjera pružanja podzemnih kanala, njihove duljine i drugih podatka potrebnih za izradu speleološkog nacrta;

c) transportni tim kojem je cilj bio transportirati speleološku, ronilačku, biološku i drugu opremu ostalim timovima;

d) tim za mjerenje abiotičkih čimbenika, kojem je osnovni zadatak bio provođenje izmjera;

e) biospeleološki tim, zadužen za prikupljanje špiljskih organizama, gljiva, faune, uzorka supstrata za puževe i drugih uzoraka te makro fotografiranje organizama;

f) fotografski tim kojem je bilo u cilju fotografirati podzemni prostor, staništa i faunu;

g) tim za video snimanja, kojem je cilj bio snimiti video materijal o podzemnom prostoru i fauni.

Prilikom terenskog rada istraživački se tim susreo sa zahtjevnim i složenim pristupom pojedinim speleološkim objektima, kao i zahtjevnim fizičkim istraživanjem pojedinih objekata. Broj urona nije se mogao unaprijed odrediti pošto se za većinu objekata nisu znale dubine, kao ni postoji li u njima podzemni prostori. Speleoronjenje postavlja zahtjevne uvjete istraživanja, a dodatni čimbenici, kao što su niska temperatura vode i fizički naporno svladavanje suhih dijelova kanala, dodatno otežavaju radove.

U sklopu terenskih istraživanja, obrađen je prikupljeni biološki i drugi (geološki, arheološki, paleontološki) materijal, obavljena dodatna fotodokumentacija te izvršeno označavanje prikupljenog materijala uz pisanje terenskog dnevnika istraživanja. Svi mikološki nalazi (uzorkovani i neuzorkovani) upisivani su u digitalnu bazu podataka CNF-a (Croatian National Fungarium, registriran u Index Herbariorum) na dnevnoj razini. Uzorkovani materijal koji nije makrofotografiran in situ u speleološkim objektima, makroskopski je obrađen, a jedan manji dio i mikroskopski analiziran.

Završni kabinetski rad obuhvatio je pisanje terenskih izvještaja, izradu katastarskih listova istraživanih objekata, digitaliziranje topografskih nacrta, odabir i obradu fotografiju, pregledavanje i izradu video materijala, izolaciju i označavanje sakupljenog biološkog materijala, stručnu taksonomsku
determinaciju sakupljenog biološkog materijala te konačno pisanje ovog završnog izvještaja koji objedinjuje sve stečene spoznaje do dana izrade, jer se složeniji dio istraživanja, prvenstveno determinacija biološkog materijala i dalje nastavlja uz naknadno objavljivanje stručnih i znanstvenih radova.

2.1 Terenski rad

**LOCIRANJE ODABRANOG SPELEOLOŠKOG OBJEKTA (SO)**

Odabrani speleološki objekti istraživanja locirani su na osnovi prethodno utvrđenih koordinata, uključenih u bazu, prethodno poznatog pristupa ili recentno, uz pomoć informatora ili vodiča. Pojedini objekti nađeni su tek nakon višekratnih terenskih istraživanja, a pojedini ni tada, o čemu su detalji navedeni u pratećim izvještajima.

Točne lokacije objekata prikazane su na topografskim kartama 1:25000 za svaki pojedini objekt u okviru Katalatskog lista, prezentiranog u Prilogu 8.2.

**DEFINIRANJE TOČNE LOKACIJE I IMENA ISTRAŽIVANOG SPELEOLOŠKOG OBJEKTA**

Po pronalasku speleološkog objekta provjerene su ili utvrđene točne koordinate objekta uz pomoć GPS uređaja. U kontaktu s lokalnim pučanstvom, dobiveno je točno ime istraživanog objekta. Ovi su podaci poslužili za precizno i točno lociranje istraživanih objekata na topografskim kartama te njihovu točnu nomenklaturu. Sva ostala utvrđena imena istraživanog objekta uključena su u bazu podataka kao sinonimi.

**FORMIRANJE ISTRAŽIVAČKIH TIMOVA**

Istraživački tim sastojao se od 20 istraživača, od čega se 14 istraživača bili na svim terenima, a istraživački tim za podzemna staništa od 6 istraživača (2 timali po 3 istraživača). Prema potrebi timovi su se modificirali prema stupnju zahtjevnosti savladavanja i istraživanja pojedinog objekta, odnosno povećavali ili smanjivali pri čemu su se točno definirali članovi pojedinog tima i njihove obveze.

**FIZIČKO SVLADAVANJE I ISTRAŽIVANJE PODZEMNOG PROSTORA**

Po prethodnoj i konkretnoj analizi istraživanog objekta odabrane su i provedene tehnike fizičkog istraživanja podzemnih prostora. Ove su tehnike uključivale: speleološke, alpinističke te speleoronilačke tehnike fizičkog istraživanja podzemnih prostora (Slika 2.1.1.), zbog čega se na terenu stalno kontrolira, nadzire i priprema zajednička i pojedinačna (individualna) oprema.

Za standardno speleološko istraživanje vertikalnih speleoloških objekata korišteno je statičko speleološko uže te fiksni ekspanzivni klinovi za postavljanje u stijenu, uz korištenje individualne speleološke opreme uz primjenu DED tehnike kretanja po užetu, što podrazumijeva kretanje spuštilica i penjalicama po statičkom užetu. Za rasvjetu je korištena isključivo električna hladna LED čeona rasvjeta.
Za speleoronilačko istraživanje (Slika 2.1.2.) korištena je posebna ronilačka oprema prilagođena za ronjenje u "overhead environment" ("nadsvođeni prostor"), odnosno u uvjetima gdje nije moguće direktno izroniti na površinu. Korištena su suha i mokra ronilačka odijela ovisno o temperaturi vode i vremenu zadržavanja pod vodom. Od ronilačke opreme korišteni su odvojeni prvi i drugi stupnjevi regulatora prilagođenih za hladnu vodu radi dodatne sigurnosti. Za rasvjetu u sifonu korištene su podvodne lampe, a za rasvjetu u suhim dijelovima šplije korištene su čeone led-lampe. Konfiguracija opreme i veličina ronilačke boce određivala se prema konfiguraciji potopljenih kanala, dubini i obimu aktivnosti koje je bilo nužno provesti. Za brže kretanje pod vodom korištena su dva podvodna skutera SUEX Zeuxo. Njihova primjena je dolazila do izražaja u vrijeme visokih voda kada je bio znatno pojačan protok podzemnih voda. Skuteri su u tim uvjetima omogućili lakši i brži pristup u udaljene dijelove podzemnih prostora.


Slika 2.1.2. Speleoronilac u sifonu u Kaverni Duboka Ljuta (foto: P. Kovač Konrad).
IZRADA RADNIH TOPOGRAFSKIH NACRTA PODZEMNIH PROSTORA

Po fizičkom svladavanju podzemnih prostora obavljena su topografska snimanja špiljskih kanala uz pomoć mobilnih instrumenata koji uključuju: kompas, klinomjer te daljinomjer. Za mjerenje parametara potrebnih za izradu speleološkog nacrta korišten je kompas i padomjer marke SUUNTO te laserski daljinomjer Leica Disto D2. Podaci su bilježeni u unaprijed definiranu tablicu, te je na temelju njih, u samom objektu, izrađena skica prostora i ucrtavanje detalja na milimetarskom papiru. Posebna tehnika izrade topografskih nacrta korištena je za podvodno crtanje. Za mjerenje dubine, azimuta i temperature vode koristio se ronilački kompjuter Suunto Vyper, podvodni digitalni kompas, podvodni laserski daljinomjer te mjerna traka. Svi podaci prikupljeni prilikom mjerenja bilježeni su u plastificiranu bilježnicu za pisanje pod vodom. Tijekom istraživanja koristila se Arijadnina nit za označavanje udaljenosti od ulaza u sifon (potopljeni dijelovi speleoloških objekata) pa do izlaska iz sifona te kao osiguranje u slučaju zamućenja vode dizanjem sitnog sedimenta s dna. Na njoj su uz oznake udaljenosti postavljene strelice koje označavaju smjer izlaza u slučaju dezorijentacije ili zamućenja. Istraživački tim koji je prvi prolazio sifone imao je zadatak postaviti sigurnosnu nit.

Na osnovi ovih radnih nacrta naknadno je u kabinetu izrađen završni digitalni topografski nacrt za svaki istraživani objekt (Slika 2.1.3.).

Slika 2.1.3 Izrada topografskog nacrta (foto: B. Jalžić).

OZNAČAVANJE ISTRAŽIVANOG OBJEKTA

Po provedenim speleološkim istraživanjima, te izradi topografskog nacrta i katastarskog lista, objektu je dodijeljen katastarski broj koji je otisnut na inox pločicu i trajno postavljen uz ulaz speleološkog objekta.
DEFINIRANJE GEOLOŠKIH, TEKTONSKIH, GEOMORFOLOŠKIH, HIDROGEOLOŠKIH, HIDROLOŠKIH, ARHEOLOŠKIH, PALEONTOLOŠKIH I OSTALIH ZNAČAJKI

Opažanjem, bilježenjem, uzorkovanjem i fotografskim dokumentiranjem, utvrđene su i zabilježene geološke, geomorfološke, tektonske, hidrogeološke i hidrološke osobine te arheološki i paleontološki nalazi i druge osobitosti istraživanih objekata.

Eventualni paleontološki i arheološki nalazi i materijal, nalaz minsko-eksplozivnih sredstava i druge osobitosti su zabilježeni, a informacije o njima proslijedene stručnjacima na analizu i obradu.

DEFINIRANJE PODZEMNIH STANIŠTA

Sukladno Nacionalnoj klasifikaciji staništa (NKS) Republike Hrvatske, prilikom terenskih istraživanja provođena su opažanja, vođene bilješke i fotografski dokumentirana sva prisutna podzemna vodena i kopnena staništa te njihova prateća fauna.

IZMJERE ABIOTIČKIH ČIMBENIKA (MIKROKLIME)

Mjerenja abiotičkih čimbenika (mikroklime) obavljana su uz pomoć mobilnog seta instrumenata koji uključuju mjerenje: temperature zraka, temperature vode i temperature supstrata; relativne vlažnosti zraka; strujanja zraka; udjela ugljičnog dioksida u zraku (CO₂) te osnovnih fizikalno-kemijskih parametara vode (pH, električnu provodljivost, salinitet, koncentraciju kisika), hidrološku funkciju i drugo.

Za mjerenje abiotičkih čimbenika kopnenih staništa korišteni su mjerni instrumenti: ubodni digitalni termometar Testo, kombinirani termo-higro-anemometar Kestrel 3000, Kestrel 4000 i kombinirani mjerač ugljičnog dioksida-termometar tvrtke Telaire, model Telaire 7001.

Za fizikalno-kemijske izmjere čimbenika vode mjerenja su provedena na svakom lokalitetu i speleološkom objektu gdje je postojao pristup vodi (Slika 2.1.4.). Od instrumenata se koristio uređaj Hanna Instruments HI 98129 Combo 1 koji mjeri sljedeće čimbenike: temperaturu, pH, ukupnu količinu otopljenih tvari i elektrovodljivost. Na dva lokaliteta (špilja Šipun i izvor Luncijata) parametri TDS i konduktivitet nisu se mogli izmjeriti zbog boćatosti vode.

Za pouzdane podatke o abiotičkim čimbenicima (temperatura i relativna vlažnost zraka) odabranih speleoloških objekata potrebno je postaviti trajne sonde za kontinuirano praćenje mikroklime. Obradom tih podataka dobiva se uvid koje je uvjete potrebno zadovoljiti da određeni objekt može poslužiti kao refugij (alternativno sklonište, pribježište) značajne podzemne faune kako bi se predložile adekvatne kompenzacijske mjere.
SAKUPLJANJE PODZEMNIH ORGANIZAMA

Sakupljanje organizama u podzemnim objektima provodili su sudionici projekta koristeći dostupnu, znanstveno priznatu metodologiju, a temeljem vlastitih višegodišnjih iskustava uz dozvolu nadležnog Ministarstva zaštite prirode i okoliša.

Biološki materijal je prikupljan uglavnom ručnim tehnikama korištenjem pinceta i ekshauxstora te su u svega tri odabrana speleološka objekta postavljene mrtvolovke za ulov kopnenih beskralješnjaka s atraktantom. U vodenim staništima koristili su se razni tipovi mrežica i živolovke, tj. vršiće s raznim atraktantima. Uz to, fauna je nabijana i upotrebom Sketove boce i Brankove čaše. U svrhu prikupljanja planktonskih rakova korištena je ručna Nansenova mreža, promjera otvora 300 mm i veličinom oka od 125 µm. Uzorci za utvrđivanje nalaza egzoskeletnih dijelova mnogočetina, puževa i školjkaša uzimani su prvenstveno na mjestima gdje su uočene kućice puževa ili ljuštura školjkaša, kako u kopnenim, tako i u vodenim staništima. Uzorci su u kopnenim staništima skupljeni običnom metalnom žlicom, a pod vodom zidarskom žlicom, i stavljani u plastične vrećice koje su transportirane transportnom vrećom.

Uzorci su naknadno ispirani, materijal osušen i pripremljen za prijenos. Sakupljeni materijal etiketiran je prema skupinama životinja i svrsh kasnije obrade.
Sakupljeni materijal je označen i pohranjen u prikladne visokokvalitetne plastične kontejnere različitog kapaciteta, koji su zatvoreni sigurnosnim čepom s navojem, a kao konzervans je korišten etilni alkohol različite koncentracije (40%, 70% ili 96%) ovisno o taksonomskoj skupini koja je u njima pohranjena. Mikološki uzorci izolirani su ručnim metodama uz pomoć ručne lupe, a uzimani su zajedno sa supstratom (uglavnom izmeti i ostaci uginulih životinja te biljni ostaci). Zasebno su ili u sklopu svojih mikro-ekoloških kompleksa smještani u pregratke čistih plastičnih kutija s nosačem i punilom koje je sprječavalo mehaničko oštećivanje uzoraka te osiguravalo trajnu zračnu vlagu kako bi uzorci mogli biti laboratorijski obrađivani u živom stanju.

Slika 2.1.5. Sakupljanje faune; lijevo: u Tunelu 3 kod Mihanica; desno: u Dvorani lopoča, Gromačka spilja (foto: R. Ozimec).

U istraživanim objektima sakupljeni su svi nađeni organizmi (Slika 2.1.5.), ali je prioritet sakupljanja bio na 21 taksonomskoj skupini podzemnih organizama, čiji su predstavnici špiljske faune, troglobionti i stigobionti, nađeni u sustavu Vilina špilja-izvor Omble. Popis ciljanih taksonomskih skupina predstavljen je u Tablici 2.1.1.
Tablica 2.1.1. Pregled ciljanih taksonomskih skupina u okviru Projekta.

<table>
<thead>
<tr>
<th>RB</th>
<th>Viša taksonomska skupina</th>
<th>Ciljana taksonomska skupina</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regnum Fungi</td>
<td>ASCOMYCOTA</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>ZYGOMYCOTA</td>
</tr>
<tr>
<td>3</td>
<td>Regnum Animalia</td>
<td>TURBELLARIA</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>NEMERTEA</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>NEMATODA</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>OLIGOCHAETA</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>POLYCHAETA</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>BIVALVIA</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>GASTROPODA</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>PALPIGRADI</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>ARANEAE</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>PSEUDOScorpiones</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>OPILIONES</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>ACARI</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>MALACOSTRACA</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>AMPHIPODA</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>ISOPODA</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>DECAPODA</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>ENTOGNATHA</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>COLEMBOLA</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>VERTEBRATA</td>
</tr>
</tbody>
</table>

ISTRAŽIVANJE ŠIŠMIŠA

Prilikom istraživanja podzemne faune unutar špilja i jama bilježeni su podaci o šišmišima, njihovoj prisutnosti i brojnosti te su bilježeni objekti s tragovima šišmiša. U objektima gdje je zabilježen veći broj šišmiša, procijenjena je njihova brojnost fotografiranjem kolonije uz mjerku 20x10 cm. Vrsta i status prisutnih populacija određene su pregledom pojedinih jedinki uhvaćenih ručnom mrežom te uz pomoć ultrazvučnog detektora (Petterson D240x). U objektima u kojima je zabilježen manji broj jedinki, brojnost je određena vizualnim opažanjem. Tijekom svakog istraživanja unutar i izvan potencijalnih prebivališta šišmiša bilježeni su mikroklimatski parametri: temperatura, vlažnost i brzina strujanja zraka pri tlu (Kestrel 4000 Pocket Weather Tracker).

FOTODOKUMENTIRANJE ISTRAŽIVAČKOG PROCESA

Svi istraživački procesi su fotodokumentirani. Fotodokumentiralo se: šire područje istraživanog objekta, lokacija i sam ulaz u istraživani objekt, podzemni i podvodni prostore, kopnena i vodena staništa, metode istraživanja. Posebnom metodom su se makrofotografirali organizmi in situ i ili naknadno u laboratoriju. Izrađena fotodokumentacija koristila se za sve prateće izvještaje, a biti će korištena iza sve naknadne potrebe: predavanja, publikacije i ostale svrhe.

Za fotografiranje kopnenih staništa korišten je veliki broj modela fotoaparata, dok je za makrofotografiranje špiljske faune korišten fotoaparat Canon 400D s više objektiva te bljeskalicom
Canon Macro Ring lite MR-14EX (Slika 2.1.6.), a za veće organizme fotoaparat Olympus Stylus TG 830.


Slika 2.1.6 Fotografije nekih kopnenih špiljskih organizama; s lijeva na desno: Isopoda, Diplura (foto. R. Ozimec).

Slika 2.1.7 Istraživanje u Kukovoj peći (foto: G. Polić).
VIDEOZAPISI ISTRAŽIVAČKOG PROCESA

Kao dodatna dokumentacija za posebno zanimljive objekte, staništa i vrste koristila se video oprema kojom su zabilježeni videozapisi, kako za kopnena, tako i za vodena i podvodna staništa.


Video snimanje u vodenim staništima obavljeno je kamerom Sony Z1 u Amphibico podvodnom kućишtu. Za snimanje prostora korištena je širokokutna leća i dvije video lampe, a za snimanje detalja i faune korištena je klasična leća sa makro predlećem i slabija rasvjeta. Cilj snimanja bio je prikaz prostora, njegove morfologije i dimenzija te faune koja u njemu obitava (Slika 2.1.8.).

IZRADA SPELEOLOŠKOG ZAPISNIKA ISTRAŽIVANJA

Za svaki istraživani speleološki objekt izrađen je digitalni Zapisnik istraživanja s brojnim prikupljenim podacima.

IZRADA DNEVNIKA ISTRAŽIVANJA

Za svako pojedino terensko istraživanje, vodio se dnevnik istraživanja sa svim relevantnim podacima: popisom istraživača, provedenim aktivnostima, ostvarenim rezultatima, izmjerama i zapažanjima.

2.2 Kabinetski rad

IZRADA BAZE PODATAKA I REFERENCI

Izrada baze podataka i referenci temeljila se na analitičkom pregledu dostupne znanstvene i stručne literature, stručnih Elaborata, nepubliciranih dnevnika i bilješki uz organizaciju baze podataka relevantnih za istraživanja, a poslužila je kao temelj za planiranje istraživanja (odabir lokaliteta, podzemnih i izvorišnih staništa, ciljanih vrsta; za metodiku i tehniku istraživanja) te za sve ostale komparativne analize ostvarenih rezultata i izradu periodičnih i završnog Izvještaja. Baza podataka i referenci sastoji se od fizičke i digitalizirane građe i kontinuirano se ažurira.

IZRADA PLANO ISTRAŽIVANJA

Na osnovi baze podataka, kao i podataka dobivenih od drugih istraživača, lokalnog stanovništva te vlastitih podataka, izrađen je Generalni plan istraživanja, te operativni Planovi istraživanja za svako pojedino terensko istraživanje.

DEFINIRANJE TEORETSKE GEOLOŠKE, TEKTONSKE, GEOMORFOLOŠKE I HIDROLOŠKE OSNOVE

Na osnovi postojeće baze podataka i ostvarenih rezultata provedenih terenskih istraživanja, definirana je geološka osnova i geneza speleoloških objekata te izvorišnih područja, njihova tektonska predispozicija, geomorfologija, hidrogeološka i hidrološka funkcija.

Ovi podaci objedinjeni su u Poglavlju 3.

DEFINIRANJE EKOLOŠKE I FAUNISTIČKE OSNOVE

Na osnovi baze podataka i ostvarenih rezultata provedenih terenskih istraživanja, a sukladno Nacionalnoj klasifikaciji staništa (NKS), definirana su prisutna podzemna staništa, kao i staništa izvorišnih područja te njihovi prateća prikupljena ili opažena fauna te drugi organizmi, prvenstveno gljive, te tako definirana ekološka i faunistička osnova speleoloških objekata te izvorišnih područja.

IZRADA KARTOGRAFSKIH PRIKAZA POLOŽAJA ISTRAŽIVANIH OBJEKATA


IZRADA KATASTARKOG LISTA SPELEOLOŠKOG OBJEKTA

Za svaki pojedini istraživani speleološki objekt izrađen je Katastark list koji služi za unos objekta u službeni Katastar speleoloških objekata Hrvatske, a kojeg vodi Državni zavod za zaštitu prirode (DZZP). Popunjeni Katastark listovi za sve istražene objekte nalaze se u Prilogu 8.2. ove Knjige. Na
svakoj kartici katastarskog lista nalaze se najvažniji podaci o objektu. Kod objekata za koje nije bilo moguće izraditi topografski nacrt ili skicu, na njegovo mjesto u katastarskom listu priložena je fotografija karakteristična za pojedini objekt.

IZRADA DIGITALNIH TOPOGRAFSKIH NACRTA ISTRAŽIVANIH OBJEKATA

Na osnovi geometarskih izmjera prilikom terenskih istraživanja, za svaki pojedini istraživani speleološki objekt ili izvor, a za koji ne postoji prethodno izrađen nacrt izrađen je topografski nacrt u digitalnoj formi, a koji uključuje tlocrtni prikaz i presjek. Za objekte koji imaju prethodni nacrt koji nije dovoljno kvalitetan ili su prilikom istraživanja otkriveni novi dijelovi objekta, izrađeni su novi kompletni ili djelomični topografski nacrti. Za eventualne, već postojeće kvalitetne nacrte, koji nisu u digitalnoj formi, obavljena je digitalizacija.


OBRADA FOTODOKUMENTACIJE

Sva ostvarena fotodokumentacija je selekcionirana, imenovana i pohranjena u bazu podataka. Prema potrebi pojedine su se fotografije dodatno obrađivale za potrebe periodičnih i završnog Izvještaja, ali i za daljnja predavanja, publikacija i ostalih aktivnosti.

OBRADA I DETERMINACIJA BIOLOŠKOG MATERIJALA

Nakon terenskog uzorkovanja zoološkog materijala uslijedilo je izoliranje, konzerviranje i označavanje materijala. Za taksonomsku determinaciju prikupljenih organizama angažiran je međunarodni specijalistički tim, stručnjaci, specijalisti za pojedine taksonomske skupine navedeni u popisu ugovorenih eksperata. Ukupno je ugovoreno 14 specijalista taksonoma iz Slovenije, Slovačke, Crne Gore, Srbije i Hrvatske.

Svi uzorkovani nalazi gljiva koje je nakon laboratorijske obrade moguće izdvojiti (ili su se već izdvojili) kao i neuzorkovani nalazi, kao fizička evidencija istraživanja uključeni su u Hrvatski nacionalni fungarij (CFN), znanstvenu zbirku gljiva, registriranu kod Index Herbariorum od 2001. godine, a koja sadrži oko 30000 uzoraka te uključuje: digitalnu bazu podataka, fotodokumentaciju kao i podatke o originalnim terenskim i laboratorijskim istraživanjima vezanim uz nalaze. Baza podataka i eksikati u vlasništvu su Hrvatskog mikološkog društva i o njima brinu mikolozi-kustosi.

Po obavljenoj taksonomskoj obradi izrađen je popis (check lista) svih utvrđenih organizama, popis organizama po pojedinim speleološkim objektima, kao i taksonomska, biološka, ekološka i biogeografska analiza utvrđenih svojsti.
NUMERIČKA OBRADA MIKROKLIMATSKIH I OSTALIH ABIOTIČKIH ČIMBENIKA

Podaci dobiveni mjerenjima mikroklimatskih i ostalih abiotičkih čimbenika u podzemnim staništima i izvorišnim područjima, numerički su obrađene s ciljem njihove interpretacije u kontekstu egzaktnog opisa djelujućih ekoloških čimbenika u pojedinom speleološkom objektu.

ODREĐIVANJE VOLUMENA PODZEMNIH OBJEKATA

Svi recentni topografski nacrti obrađeni su u programu Speleoliti 4.4 koji je namijenjen prostornom modeliranju speleoloških objekata. Programskom obradom dobiveni su dubina, duljina (stvarna i horizontalna), visinska razlika i volumen za pojedini objekt. Stariji nacrti, za koje nisu bile dostupne tablice s mjernim vlakovima, rekonstruirani su i programsko obrađeni. Za takve objekte, zbog nedostatka podataka, moguće je odstupanje prilikom izračuna volumena.

FINALIZACIJA DNEVNIKA ISTRAŽIVANJA

Na osnovi postojećih terenskih Dnevnika, ostvarenih bilješki i fotodokumentacije neposredno nakon obavljenog terenskog istraživanja, izrađen je završni digitalni Dnevnik istraživanja za svaki istraživački teren.

IZRADA PERIODIČKIH TERENSKIH IZVJEŠTAJA

Na osnovi završnih Dnevnika istraživanja te naknadnih kabinetskih obrađenih Dnevnika (kartografski prikazi lokacija, topografski nacrti, obrađena fotodokumentacija, determiniran biološki materijal, obrađene terenske izmjere i drugo) izrađena su četiri Terenska izvještaja, dva za kolovoz 2014., te po jedan za rujan i studeni 2014. godine.

IZRADA ZAVRŠNOG IZVJEŠTAJA (ELABORATA)

Po provedenom istraživanju, na osnovi svih prethodno i naknadno ostvarenih rezultata, izrađen je završni izvještaj u kojem su prezentirani rezultati i sinteze provedenih istraživanja. Taj izvještaj se prezentira u ovoj knjizi, kao prilog Glavnoj ocjeni prihvatljivosti zahvata HE Ombla na ekološku mrežu.

Temeljem terenskih izvještaja i rezultata determinacije izrađen je ovaj dokument.

DOPUNA ELABORATA PRETHODNE I GLAVNE OCJENE PRIHVATLJIVOSTI ZAHVATA NA EKOLIŠKU MREŽU ZA ZAHVAT HE OMLBA

Nakon izrade završnog izvještaja, dopuniti će se elabarat Prethodne i Glavne ocjene prihvatljivosti zahvata na ekološku mrežu za zahvat HE Ombla.

IZRADA ZBIRKE PODZEMNE FAUNE

Nakon izoliranja, konzerviranja, označavanja i determinacije, prikupljeni materijal pohranjen je u znanstvenoj zbirici podzemne faune matične muzejske institucije za prirodooslovlje u Hrvatskoj - Hrvatskom prirodooslovnom muzeju kao novo formirana Biospeleološka zbirka HPM-a.
3 Opis i analiza istraživanih speleoloških objekata (SO)

3.1 Dinarski krš na području Dubrovačko - neretvanske županije

Hrvatska je zemlja klasičnog krša, razvijenog prvenstveno na području planinskog lanca Dinarida koji prekriva 29400 km², tj. oko 52% kopnene površine državnog teritorija. Dinarski krš Hrvatske pripada tipu krša umjerenih širina (Dinaridi, Alpe, Pirineji, Apalachian gorje, gorja Australije itd.) koji se ističe debelim (i do 8 km) karbonatnim mezozojskim i paleogenskim sedimentima, uz naglašenu tektonsku razloženost. U skladu s regionalnom podjelom Hrvatske, Dinaridi se prostiru u čak tri hrvatske makroregije. Mediteranska i Planinska gotovo se u potpunosti nalaze na području Dinarida, dok južni i jugozapadni dio Zapadno-panonske makroregije obuhvaća područje vanjskih Dinarida, odnosno plitkog krša Korduna, Pokuplja i Žumberka. Posebno je zanimljiv izolirani krš na području Supradinarika, gdje je na krajnjem sjevernom dijelu, području Varaždinske županije, prisutan subalpski, a u južnom dijelu Supradinarika, na području Dubrovačko-neretvanske županije vrlo zanimljiv mozaički krš, dijelom razvijen i u laporanitim stijenama. Jedino četvrta, Istočno-panonska makroregija, ne obuhvaća Dinaride ni Alpide, već Panonik s ostacima orijentalnog kopna na kojem je također mozaičko prisutno okršavanje s podzemnim krškim fenomenima (Slika 3.1.1.).

Slika 3.1.1. Pojednostavljena tektonska karta hrvatskog dijela Dinarida s označenim područjem Dubrovačko-neretvanske županije (DNŽ); legenda: A: Adriatik (Adriaticum), D: Dinarik (Dinaricum), dinarska krška platforma, S: Supradinarik (Supradinaricum), eudinamično područje, P: Panonski bazen (Panonik), geološke strukture Panonskog bazena.

Dubrovačko-neretvanska županija (DNŽ) nalazi se na području Dinarika, duboko okršene krške platforme i jedini je dio Hrvatske koji obuhvaća ukupno tri biogeografske regije Dinarida, koja se proteže od rijeke Neretve sve do Albanije, gdje se završetkom Dinarida nastavljaju masiv Taurida. Na području DNŽ ističu se brojni speleološki objekti. Veličinom, ljepotom, arheološkim i paleontološkim nalazima, rijetkim špiljskim staništima i špiljskom fauna na području ističu se: Vela špilja i Samograd špilja na otoku Korčuli; Jama u Predolcu kod Metkovića s najvećom kolonijom dinarskog špiljskog školjkaša kongerije (Congeria kusceri); špilja Aragonka kod Ljubača s prekrasnim speleothemama aragonita; te Jama pod Sv. Spasom na otoku Mljetu s ogromnim jezerom slatke vode; Glogova jama i špilja Jezero na Snježnici; kaverna Duboka Ljuta; špilja Crno jezero kod Ponikva na Stonu te brojni drugi speleološki objekti.

Anhijalina špilja Šipun u Cavtatu biospeleološki je fenomen, iz nje je opisano čak 18 vrsta, što je čini najbogatijim tipskim špiljskim nalazištem u Hrvatskoj, a još se uvijek u Šipunu nalaze nove vrste za znanost. Ostala istaknuta tipska nalazišta špiljske faune su: sustav Vilina špilja – izvor Omble, koja je s više od 4 km kanala najdublja špilja jadranskog priobalja; Jakasova špilja i Špilja Pišurka na otoku Korčuli; Movrica i Ostaševica na otoku Mljetu; Rača špilja na otoku Lastovu; Špilja za Gromačkom vlakom kod Orašca, Močiljska špilja kod Osojnika i druge.

Na području Županije nađene su brojne endemične vrste špiljske faune među kojima se posebno ističe vodena fauna: rakovi, puževi, pijavice; te iznimno bogata kopnena fauna u kojoj pretežno korinaši, paučnjaci, stonoge i kopneni rakovi. Na području kontinentalnog dijela županije koji obuhvaća podregije: Neretva s Malom Žabom, Dubrovačko primorje, grad Dubrovnik, Župa dubrovačka i Konavle sa Snježnicom; utvrđeni su nalazi iznimno bogate špiljske faune poznate iz istočne Hercegovine i zapadne Crne gore. Prema nekim autorima, ovaj trokut južnih Dinarida (Popovo polje – Dubrovnik – Orjen) predstavlja biospeleološki najbogatije područje na svijetu.
3.2 Geološka osnava, hidrogeološka funkcija i geomorfologija dijela špilja i jama šireg dubrovačkog područja

Istraživano područje odlikuje se visoko razvijenim krškim reljefom, s tipičnim površinskim i podzemnim krškim oblicima. Većina istraživanih speleoloških objekata nastala je okršavanjem mezozojskih, manjim dijelom paleogenskih karbonatnih stijena, koje je započelo u oligocenu (nakon izdizanja stijena iz morskog okoliša) a u hidrološki aktivnim objektima okršavanje se odvija i danas.

Obzirom na geološku osnovu i hidrološku aktivnost koji su uvjetovali postanak i geomorfologiju, istraživane speleološke objekte možemo podijeliti na one koji su danas hidrološki aktivni te na one fosilne bez značajnije, recentne hidrološke aktivnosti. Kompleksniji speleološki objekti kao što je sustav Vilina špilja-izvor Omble ulaze u treću kombiniranu kategoriju budući u sebi uključuju hidrološki neaktivne fosilne kanale povezane sa recentnim aktivnim freatičkim kanalima u kojima se danas odvija intenzivno okršavanje.

3.2.1 Izvori, ponori i drugi hidrološki aktivni speleološki objekti

Dolina Neretve

Većina djelomično i potpuno potopljenih speleoloških objekata te izvora doline Neretve nalaze se na kontaktu rastresitih kvartarnih naplavnih riječnih naslaga i čvrstih karbonatnih stijena kredne starosti koje izgrađuju okolni brdoviti reljef i imaju ulogu akumuliranja i provođenje oborinske vode do erozijske baze doline Neretve. U ovoj skupini pojavljuje se niz manjih speleoloških objekata i izvora (objekti na karti: 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74).

Dio ovih objekata čine špilje koje su prije pleistocenskog podizanja razine Jadrana bile djelomično ili potpuno suhe o čemu svjedoče signe nastale u nekadašnjim vadoznim uvjetima, koje su danas potopljene vodom. Primjeri takvih objekata su Čekrk jama (61), Izvor špilja kod kapelice sv. Mihovil (67) te Jama u Predolcu (65, sa jedinstvenom špiljskom faunom, turistički uređena).

Područje jugoistočno od Neretve

Uz samu morsku obalu, u uvali Bistrina, pojavljuju se morem preplavljeni nekadašnji izvori u obliku vrluje Morašnica i vrluje Stupski jaz (objekti 77 i 78) koji izbijaju iz okršenih krednih vapnenaca.

U Šipun špilji (94) kod Cavtata jedan kanal je potopljen i povezan s morem, a u kaverni Duboka Ljuta (85), koja je otvorena miniranjem u tunelu hidroelektrane, potopljeni kanal spušta se na 63 m ispod razine mora.

Dio kopnenih izvora izbija na površinu zbog slabije propusne gornje trijaske dolomitne podloge (izvori 62, 75, 76, 79, 81, 82, 83, 84, 86, 87 i 97).

Jedan manji izvor izvire na kontaktu trijskih dolomita i eocenskih naslaga (102), a jedan u donjokrednim karbonatima (95).

U naslagama eocena pojavljuju se izvor Ljute (96), Sumporača špilja velika (105) i izvor Luncijata (80), a u jurskim vapnenicima protočna Glogova jama (1) na Sniježnici.
Na poluotoku Pelješcu u gornjokređnim karbonatima nalazi se izvor Lokva Vidohovo (100).

Na južnom rubu Konavskog polja nalazi se Ponor Ljute (113) koji podzemljem odvodi vodotok Ljute prema izvoru u moru.

Među istraženim umjetnim tunelima povremeno je hidrološki aktivan tunel Konavsko polje-more (30), koji ima značajnu funkciju odvođenja viška vode sa Konavskog polja.

### 3.2.2 Hidrološki neaktivni speleološki objekti

U ovu skupinu, koju čine stari fosilni hidrološki neaktivni podzemni kanali, ulazi najveći broj istraženih speleoloških objekata.

U gornjotrijskim karbonatima nalazi se špilja Aragonka (47) poznata po izuzetnim nakupinama kristala aragonita, te niz manjih špilja i jama (40, 41, 42, 45, 46 i 108).

Na kontaktu gornjotrijanskog dolomita i jurskih vapnenaca nastala je velika i nekada turistički uređena Močiljska špilja (101), špilja Banova ljut (49) te manji objekti (7 i 16). U jurskim karbonatima smještene su Plješina jama (11) i Špilja Jezero (104) na Sniježnici te niz manjih objekata (21, 4, 6, 43, 50, 53, 88, 89, 110, 111).

U kređnim karbonatima nalazi se niz većih i značajnih speleoloških objekata kao npr. Velika jama poviše Tornja (38), Vištičina jama (93), Durovića jama (98), Kornjatuša jama (99), te niz manjih objekata (39, 44, 90, 91, 92, 103, 106, 39, 10, 12, 13, 14, 15, 17, 18, 20, 22, 35, 37 te uz Konavsko polje; 2, 5, 8, 9, 13, 15, 32).

U paleogenskim vapnencima istražena su dva manja speleološka objekta (51 i 112) te mala špilja u flišu. Osim prirodnih speleoloških objekata ovoj skupini mogu se priključiti i hidrološki neaktivni umjetni tuneli (23, 24, 25, 26, 27, 28, 29).

### 3.2.3 Speleološki objekti s hidrološkim aktivnim i neaktivnim kanalima

U ovu skupinu spadaju kompleksni speleološki objekti koji u sebi uključuju hidrološki neaktivne fosilne kanale povezane sa recentnim aktivnim freatičkim kanalima u kojima se danas odvija intenzivno okršavanje.

Iako ovu skupinu čini malen broj speleoloških objekata, ti su objekti po svojoj veličini i značaju najveći. To su: sustav Vilina špilja-izvor Omble (36), Špilja za Gromaćkom vlakom (109), te djelomično istražena Bezdanka (48). Detaljniji opisi geologije prvih dvaju navedenih objekata prikazani su poglavlju 3.2.4. Ilustrativni primjeri, gdje se nalaze opisi geološki detaljnije istraživanih speleoloških objekata.

### 3.2.4 Ilustrativni primjeri

Močiljska špilja (101)

Močiljska špilja smještena je na granici slabo propusnih gornjotrijanskog dolomita i dobro propusnih donjojurskih vapnenaca, u neposrednoj blizini reversnog rasjeda dinarskog pravca pružanja.
Pružanje kanala špilje uvjetovano je pružanjem slojnih ploha te brojnim tektonskim lomovima koji su uočljivi u špilji. Velika tektonska razlomljenost stijena vidljiva je već u ulaznom dijelu špilje gdje su izmjerene paraklaze (12/38 i 15/65) rasjeda koji je uvjetovao pružanje prvih oko 80 m kanala u smjeru sjeveroistoka, odnosno u smjeru nagiba rasjedne plohe. Isti smjer pružanja imaju još i tri manja bočna kanala. Idućih oko 300 m kanala (od najistočnijeg dijela špilje sa nalazima keramike pa prema zapadu) pruža se pravcem istok-zapad, odnosno IJI-ZSZ, prateći pružanje slojnih ploha (180/10) koje su na mjestima dobro vidljive (Slika 3.2.1.).


Treći smjer pružanja, u kojem se pruža najveći dio špilje, oko 500 m kanala, vodi prema sjeverozapadu (JI-SZ). Pružanje i nagib uvjetovani su najvećim dijelom rasjedom koji je dobro vidljiv i izmjeren (220/60) u zadnjem dijelu špilje (Slika 3.2.2.). Osim njega izmjereni su i drugi rasjedi i pukotine duž kojih se pružaju neki bočni kanali ili su uvjetovali stvaranje pojedinih većih dvorana (335/50, 300/50, 360/26, Slika 3.2.3.). Znatno izmijenjeni položaji slojeva (280/40, 315/25) u ovom dijelu špilje potvrđuju veliku tektonsku razlomljenost.
Slika 3.2.2. Rasjed 220/60 koji je uvjetovao pružanje većeg dijela glavnog kanala Močiljske špilje (foto: D. Lacković).

Slika 3.2.3. Paraklaza rasjeda (360/26) sa strijama u stropu glavnog kanala (foto: D. Lacković).
Izmjereni položaji slojeva (bijelo) te rasjeda i pukotina (crveno) ucrtani na tlocrtu Močiljske špilje.

U hidrološkom smislu Močiljska špilja danas nema značajniju ulogu, tek se na nekoliko mjesta u špilji pojavljuju nakapnice iz kojih se talože recentne sige. U geološkoj prošlosti, prije taloženja siga (vjerojatno za vrijeme pliocena i starijeg pleistocena), špilja je vjerojatno predstavljala uzlazni izvor uvjetovan kontaktom slabije propusnog dolomita u podini i dobro propusnih vapnenaca u krovini. Prvotna morfologija i stijenski reljef dijelom su prekriveni urušenim blokovima stijena i sigama čije je taloženje aktivno i danas na mjestima procjeđivanja vode s površine.

Špilja je izuzetno bogata različitim tipovima siga, od kojih su zapaženi stalaktiti, stalagmiti, stupovi, saljevi, koraloidi, zavjese, špiljske kamenice, špiljske splavi te lijepo razvijeni kristali aragonita. Dio siga taloži se aktivno i danas tako da je ova špilja, obzirom na laku pristupačnost, pogodna za mjerenje i praćenje brzine rasta recentnih siga kao i za paleoklimatska istraživanja na temelju starih stalagmita i drugih tipova siga.

Za određivanje detaljnijeg postanka špilje potrebno je obaviti sustavno geološko istraživanje koje uključuje detaljno snimanje stijenskog reljefa, uzorkovanje te određivanje starosti različitih špiljskih taloga radioaktivnim metodama, paleontološko istraživanje sedimenata u kojima su nađeni ostaci špiljskog medvjeda i alpskog svisca te mineraloško istraživanje kristala aragonita i tamnih mineralnih prevlaka na stropu kanala (nastalima vjerojatno na mjestima zadržavanja nekadašnjih kolonija šišmiša).
Vranja peć (110)

Prema morfologiji kanala Vranja peć je špilja s jamskim ulazom. Ulaz se nalazi na samom kontaktu gornjotrijaskog dolomita i uslojenih donjojurskih vapnenaca (260/25), uz rasjed (45/75) (Slika 3.2.5.). Pružanje kanala pravcem sjeverozapad-jugoistok uvjetovano je pružanjem slojeva (260/25) te rasjedima (60/45 i 17/30, Slika 3.2.6.) koji su izmjereni pri dnu špilje. Dno kanala prekriveno je siparišnim stjenskim materijalom te velikim urušnim blokovima stijena među kojima se nalaze i velike stare siga odložene sa stropa (Slika 3.2.7.) koje su mjestimično prekrivene mlađim sigama i/ili kamenim blokovima urušenim sa stropa. Bilo bi zanimljivo detaljnije istražiti apsolutnu starost različitih generacija siga te njihovu povezanost sa tektonskim događajima i klimatskim promjenama.

Od siga u špilji su zapaženi stalaktiti, stalagmiti, stupovi, saljevi, koraloidi, zavjese i špiljske kamene. U stropu kanala mjestimično se nalaze tamnosmeđe do crne mineralne prevlake čiji postanak bi mogao imati veze sa zadržavanjem kolonija šišmiša, kao što je to slučaj sa Vištičinom jamom gdje je određeno da se radi o mineralu karbonat-hidroksilapatitu (Lacković, 2003).

Špilja je hidrološki neaktivna izuzev malih nakapnica pri dnu špilje. Špilja je nastala okršavanjem na granici dolomita i vapnenca, a preciznija hidrogeološka uloga špilje nije određena. Na slici 3.2.8. prikazani su izmjereni položaji slojeva (crno) te rasjeda i pukotina (crveno) ukrnati na tloortu špilje.
Slika 3.2.6. Rasjedna ploha 60/45 pri kraju kanala. Na plohi rasjeda istaložene su špiljske zavjese (foto: D. Lacković).

Slika 3.2.7. Među urušenim blokovima na podu kanala nalaze se i velike stare sige (foto: D. Lacković).
Vištičina jama (93)

Vištičina jama nalazi se u vapnencima gornje krede. Na ulazu jame izmjeren je rasjed 180/70 koji je uz ostale pukotine uvjetovao okršavanje odnosno stvaranje ulazne vertikale. Jama se u podzemlje nastavlja strmim kanalom koji je vjerojatno predisponiran tektonski, no konkretne izmjere nisu napravljene zbog prekrivenosti osnovne stijene različitim talozima. U boku kanala mjestimično je moguće vidjeti stijenu bogatu fosilnim školjkašima (Slika 3.2.9.).
Jama je izuzetno bogata sigama među kojima dominiraju veliki saljevi i špiljske kamenice, zatim stalaktiti, stalagmiti, stupovi, zavjese i koraloidi.

Na sjevernom kraju jame pod kanala prekriven je debelim slojem guana šišmiša, koji je utjecao i na obojenost pojedinih saljeva i drugih siga. U stropu kanala česte su tamnosmeđe do crne prevlake minerala karbonat-hidroksilapatita (Slika 3.2.12., Lacković, 2003) koje su nastale reakcijom mokraće šišmiša koji se ovdje zadržavaju sa vapnencem.

Vistićina jama hidrološki je aktivna samo u smislu procjeđivanja oborinskih voda koje u jami aktivno stvaraju sige te ispunjavaju male i velike špiljske kamenice (Slika 3.2.11.).

Od stijenskog reljefa u stropu i boku kanala zapažene su strujnice (Slika 3.2.10.) kao pokazatelj vodenih tokova u najstarijem freatskom razdoblju stvaranja kanala, prije taloženja siga.
Slika 3.2.11. Aktivni saljev i špiljske kamenice ispunjene vodom (foto: D. Lacković).


**Sustav Vilina špilja-izvor Omble (36)**

Prilikom terenskog istraživanja obiđen je samo glavni kanal najgornje etaže ovog kompleksnog špiljskog sustava te je obavljeno grubo geološko rekognosiranje.

Glavni kanal Viline špilje pruža se od ulaza u smjeru sjeverozapada što je uvjetovano pružanjem slojeva (50/40) jurskih vapnenaca unutar kojih je špilja nastala te brojnim pukotinama i rasjedima. Položaj slojeva izmjeren je u špilji na nekoliko mjesta, u ulaznom dijelu iznosi 55/45, idući prema kraju kanala 55/40, 50/40, 60/35, 55/35, 50/25 te 30/35. Od tektonskih elemenata u ulaznom dijelu izmjeren je rasjed 280/36, a u sredini dijelu kanala rasjed 195/55.
Kanali najgornje etaže predstavljaju najstariji dio čitavog špiljskog sustava, u hidrološkom smislu danas su neaktivni, izuzev procjednih voda (nakapnica) iz kojih se mjestimično stvaraju recentne siga. Današnji položaj različitih kanala sustava Vilina špilja-izvor Omble na različitim nadmorskim visinama odraz je dugotrajnog okršavanja i tektonskog izdizanja terena koji se odvijaju od oligocena pa sve do danas. Točnija starost pojedinih kanala mogla bi se odrediti određivanjem apsolutne starosti siga i paleomagnetskim istraživanjem klastičnih sedimenata, za što bi trebalo poduzeti detaljno geološko istraživanje ovog sustava.

Špilja obiluje odlično sačuvanim različitim tipovima siga – stalaktitima, stalagmitima, stupovima, saljevima, špiljskim kamenicama, koraloidima, špiljskim zavjesama i špiljskim biserima. U stropu su mjestimično vidljive tamnosmeđe prevlake, vjerojatno minerala karbonat-hidroksilapatita.

Slika 3.2.13. Izmjereni položaji slojeva (crno) te rasjeda (crveno) ucrtani na tlocrtu gornje etaže špilje.

**Špilja iznad Omble (16)**

Špilja iznad Omble nalazi se na kontaktu gornjetrijaskog dolomita i donjejurskih vapnenaca. Pružanje glavnog kanala uvjetovano je pružanjem slojeva (SZ-JI), te rasjedom 190/70 koji je izmjeren na samom ulazu (Slika 3.2.14. i 3.2.15.). Špilja je hidrološki neaktivna, a nekada je vjerojatno imala ulogu izvora. Stjenke kanala prekrivene su sigastim saljevima i kršjem koje je velikim dijelom nastalo uslijed miniranja u špilji.

![Slika 3.2.13. Izmjereni položaji slojeva (crno) te rasjeda (crveno) ucrtani na tlocrtu gornje etaže špilje.](image-url)

Slika 3.2.15. Tlocrt Špilje iznad Omble.
Kaverna 781 (34)

Ulaž u Kavernu 781 nalazi se u umjetnom tunelu Konavosko polje-more. Kaverna vjerojatno predstavlja dio gornje etaže sustava podzemnih kanala kojima se prirodnim putem odvodila voda Konavoskog polja prema moru.

Osnovno pružanje kanala SI-JZ uvjetovano je pružanjem rasjeda koji je izmjeren u ulaznom dijelu kaverne 290/30 (Slika 3.2.16. i Slika 3.2.17.) te na gornjoj etaži velike dvorane u središnjem dijelu kaverne - 310/40 (Slika 3.2.18.). Osim toga, morfologiju kanala određuju i položaji slojeva (35/30, 28/35, Slika 3.2.16. i 3.2.19.).

U stropu gornje etaže velike središnje dvorane zapažen je i špiljski stjenski reljef u obliku velikih strujnica (Slika 3.2.20.) koje su nastale erozijom i korozijom uslijed sporog tećenja u freatskoj ranoj fazi postanka kanala. Ovaj je stari reljef u nižim dijelovima kanala većim dijelom erodiran te prekriven mladim urušnim blokovima stijena i muljnim sedimentom nastalima u kasnijoj vadoznoj fazi postanka kaverne. Nedostatak sigastih taloga ukazuje da je špilja relativno mladog postanka, a o nedavnoj hidrološkoj aktivnosti svjedoče subrecentni ostaci cjevčica marifugija uočeni na stijeni (Slika 3.2.19.).

Slika 3.2.16. Izmjereni položaji slojeva (crno) te rasjeda (crveno) ucrtani na tlocrtu kaverne.
Geološka istraživanja Špilje za Gromačkom vlakom obavljana su tijekom 1985. g. kada je špilja po prvi puta i speleološki istraživana (Malinar, 1989). Prema Malinaru, gornji dijelovi špiljskih kanala razvili su se u jurskim vapnencima (lijas), dok su najniže etaže nastale u dolomitima lijasa, a možda i u starijim dolomitskim naslagama gornjega trijasa. Posebnu vrijednost špilji daje otkriće tragova bosih nogu prethistorijskog čovjeka. Starost tragova određena je metodom radioaktivnog ugljika C14 na 12000 godina, no Malinar pretpostavlja da je starost tragova mlađa (kraj atlantika), možda i istovremena sa starošću pronađene keramike (oko 5000 do 4000 g BP) te sugerira ponavljanje analize uz detaljnije razdvajanje uzorka sigaste kore od mogućeg zagadenja česticama pijeska iz starijeg sedimenta u podlozi.

Špilja je u nižim dijelovima još uvijek hidrološki aktivna u obliku manjeg vodenog toka koji na kraju završava sifonom. U ostalim kanalima pojavljuju se vode prokapnice iz kojih se talože sige i koje stvaraju manja jezerca.
Zbog svojih geomorfoloških, paleontoloških i estetskih vrijednosti špilja je 1986. g. zaštićena kao geomorfološki spomenik prirode.

S obzirom na jedinstvene nalaze otisaka ljudskih stopala te izuzetno bogatstvo različitih tipova siga i špiljskih sedimenata, bilo bi zanimljivo poduzeti detaljnija geološka istraživanja ove špilje, prije svega dodatne C^{14} i U-Th analize različitih siga te sedimentološka, paleontološka i paleomagnetska istraživanja klastičnih špiljskih sedimenata čija debljina iznosi na mjestima i više od 3 metra. Na taj način dobiveni rezultati pridonijeli bi znatno detaljnijoj interpretaciji kako evolucije špilje tako i evolucije šireg područja.

Speleološki nacrt Špilje za Gromačkom vlakom prikazan je na slici 3.2.21.

Slika 3.2.21. Speleološki nacrt Špilje za Gromačkom vlakom.
3.3 Pregled istraživanih speleoloških objekata

U okviru projekta istraživano je 115 geomorfološko-hidrološki raznovrskih speleoloških objekata. Njihov detaljan opis predstavljen je na standardiziranim katastarskim listovima u Prilogu 8.2 ove Knjige. U Tablici 3.3.1. predstavljen je sažeti popis svih istraživanih speleoloških objekata s osnovnim podacima o objektima.

Tablica 3.3.1. Popis istraživanih speleoloških objekata.

<table>
<thead>
<tr>
<th>RB</th>
<th>Speleološki objekt</th>
<th>Općina</th>
<th>Duljina (m)</th>
<th>Dubina (-m)</th>
<th>Vert. razl. (m)</th>
<th>Volumen (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aragonka</td>
<td>Dubrovnik</td>
<td>260,0</td>
<td>21,0</td>
<td>43,0</td>
<td>25956,0</td>
</tr>
<tr>
<td>2</td>
<td>Banova ljut</td>
<td>Dubrovnik</td>
<td>306,0</td>
<td>25,0</td>
<td>37,0</td>
<td>15450,0</td>
</tr>
<tr>
<td>3</td>
<td>Bezdanka</td>
<td>Konavle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bunar na zemlji Ilije Plećaša</td>
<td>Kula Norinska</td>
<td>2,8</td>
<td>1,1</td>
<td>1,1</td>
<td>6,2</td>
</tr>
<tr>
<td>5</td>
<td>Bunar na zemlji Mire Volarevića</td>
<td>Metković</td>
<td>2,0</td>
<td>1,7</td>
<td>1,7</td>
<td>1,0</td>
</tr>
<tr>
<td>6</td>
<td>Bunar na zemlji Vice Jakića</td>
<td>Metković</td>
<td>2,5</td>
<td>2,3</td>
<td>2,3</td>
<td>2,5</td>
</tr>
<tr>
<td>7</td>
<td>Čekrk jama</td>
<td>Metković</td>
<td>23,8</td>
<td>13,8</td>
<td>13,8</td>
<td>310,0</td>
</tr>
<tr>
<td>8</td>
<td>Debele ljut špilja</td>
<td>Dubrovnik</td>
<td>105,0</td>
<td>54,0</td>
<td>54,0</td>
<td>3150,0</td>
</tr>
<tr>
<td>9</td>
<td>Donji izvor u Glušćima</td>
<td>Metković</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Đurovića jama</td>
<td>Konavle</td>
<td>82,0</td>
<td>25,0</td>
<td>25,0</td>
<td>7950,0</td>
</tr>
<tr>
<td>11</td>
<td>Glogovna jama</td>
<td>Konavle</td>
<td>428,0</td>
<td>156,0</td>
<td>156,0</td>
<td>104506,0</td>
</tr>
<tr>
<td>12</td>
<td>Gornji izvor u Glušćima</td>
<td>Metković</td>
<td>3,3</td>
<td>2,0</td>
<td>2,0</td>
<td>4,5</td>
</tr>
<tr>
<td>13</td>
<td>Gusarska špilja</td>
<td>Konavle</td>
<td>46,0</td>
<td>27,0</td>
<td>27,0</td>
<td>1895,0</td>
</tr>
<tr>
<td>14</td>
<td>Izvor Badžula</td>
<td>Zažablje</td>
<td>50,0</td>
<td>6,7</td>
<td>6,7</td>
<td>6700,0</td>
</tr>
<tr>
<td>15</td>
<td>Izvor Bijeli Vir</td>
<td>Zažablje</td>
<td>7,0</td>
<td>7,2</td>
<td>7,2</td>
<td>42,0</td>
</tr>
<tr>
<td>16</td>
<td>Izvor Bosna</td>
<td>Dubrovnik</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Izvor Čatrnja</td>
<td>Metković</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Izvor Duboka Ljuta</td>
<td>Župa dubrovačka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Izvor između Točionika i Lisca</td>
<td>Dubrovačko primorje</td>
<td>6,0</td>
<td>1,0</td>
<td>1,0</td>
<td>36,0</td>
</tr>
<tr>
<td>20</td>
<td>Izvor Luncijata</td>
<td>Dubrovačko primorje</td>
<td>1,0</td>
<td>0,2</td>
<td>0,2</td>
<td>1,0</td>
</tr>
<tr>
<td>21</td>
<td>Izvor Ljute Konavoske</td>
<td>Konavle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Izvor na zemlji Grge Jurića</td>
<td>Kula Norinska</td>
<td>2,0</td>
<td>1,0</td>
<td>1,0</td>
<td>2,0</td>
</tr>
<tr>
<td>23</td>
<td>Izvor Obli vir</td>
<td>Slivno</td>
<td>50,0</td>
<td>9,0</td>
<td>9,0</td>
<td>3768,0</td>
</tr>
<tr>
<td>24</td>
<td>Izvor Palata</td>
<td>Dubrovnik</td>
<td>8,0</td>
<td>7,0</td>
<td>7,0</td>
<td>22,5</td>
</tr>
<tr>
<td>25</td>
<td>Izvor Prud</td>
<td>Metković</td>
<td>48,0</td>
<td>8,4</td>
<td>8,4</td>
<td>9000,0</td>
</tr>
<tr>
<td>26</td>
<td>Izvor Smokovijenac</td>
<td>Župa dubrovačka</td>
<td>6,8</td>
<td>0,5</td>
<td>0,5</td>
<td>12,0</td>
</tr>
<tr>
<td>27</td>
<td>Izvor Studenac</td>
<td>Dubrovačko primorje</td>
<td>3,5</td>
<td>3,5</td>
<td>3,5</td>
<td>1,0</td>
</tr>
<tr>
<td>28</td>
<td>Izvor špilja kod bunkera</td>
<td>Metković</td>
<td>2,2</td>
<td>1,8</td>
<td>1,8</td>
<td>2,0</td>
</tr>
<tr>
<td>29</td>
<td>Izvor špilja kod kapelice Sv. Mihovil</td>
<td>Zažablje</td>
<td>12,0</td>
<td>5,5</td>
<td>5,5</td>
<td>21,0</td>
</tr>
<tr>
<td>RB</td>
<td>Speleološki objekt</td>
<td>Općina</td>
<td>Duljina (m)</td>
<td>Dubina (- m)</td>
<td>Vert. razl. (m)</td>
<td>Volumen (m³)</td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>30</td>
<td>Izvor špilja poviše Oblog vira</td>
<td>Slivno</td>
<td>24,8</td>
<td>7,7</td>
<td>7,7</td>
<td>400,0</td>
</tr>
<tr>
<td>31</td>
<td>Izvor Topolac</td>
<td>Dubrovačko primorje</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Izvor u Mliništu</td>
<td>Zažablje</td>
<td>74,0</td>
<td>10,0</td>
<td>10,0</td>
<td>8802,0</td>
</tr>
<tr>
<td>33</td>
<td>Izvor u selu Duba Konavoska</td>
<td>Konavle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Izvor Ugor</td>
<td>Dubrovačko primorje</td>
<td>2,0</td>
<td>2,0</td>
<td>2,0</td>
<td>3,1</td>
</tr>
<tr>
<td>35</td>
<td>Izvor Vrilo</td>
<td>Župa dubrovačka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Izvor Žeginjac</td>
<td>Župa dubrovačka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Izvorište Slavljan</td>
<td>Dubrovnik</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
<td>6,7</td>
</tr>
<tr>
<td>38</td>
<td>Jama kod groblja</td>
<td>Dubrovačko primorje</td>
<td>23,0</td>
<td>23,0</td>
<td>23,0</td>
<td>184,0</td>
</tr>
<tr>
<td>39</td>
<td>Jama na gomilama</td>
<td>Konavle</td>
<td>32,0</td>
<td>21,0</td>
<td>21,0</td>
<td>230,0</td>
</tr>
<tr>
<td>40</td>
<td>Jama na vrh Krčevina</td>
<td>Dubrovnik</td>
<td>33,0</td>
<td>21,0</td>
<td>21,0</td>
<td>115,0</td>
</tr>
<tr>
<td>41</td>
<td>Jama na vrh Prodoli</td>
<td>Dubrovnik</td>
<td>8,0</td>
<td>6,5</td>
<td>6,5</td>
<td>50,0</td>
</tr>
<tr>
<td>42</td>
<td>Jama na vrh Vrguda</td>
<td>Dubrovnik</td>
<td>72,0</td>
<td>24,0</td>
<td>24,0</td>
<td>3223,5</td>
</tr>
<tr>
<td>43</td>
<td>Jama pod Brk</td>
<td>Konavle</td>
<td>106,0</td>
<td>46,0</td>
<td>46,0</td>
<td>748,7</td>
</tr>
<tr>
<td>44</td>
<td>Jama u Predolcu</td>
<td>Metković</td>
<td>56,0</td>
<td>20,0</td>
<td>20,0</td>
<td>2300,0</td>
</tr>
<tr>
<td>45</td>
<td>Jama u Zabiradu</td>
<td>Dubrovnik</td>
<td>90,0</td>
<td>87,0</td>
<td>87,0</td>
<td>4645,0</td>
</tr>
<tr>
<td>46</td>
<td>Jama uz stazu na Sv. Nikoli</td>
<td>Dubrovnik</td>
<td>32,0</td>
<td>7,6</td>
<td>7,6</td>
<td>510,0</td>
</tr>
<tr>
<td>47</td>
<td>Jama za Rasohama</td>
<td>Dubrovačko primorje</td>
<td>38,0</td>
<td>29,0</td>
<td>29,0</td>
<td>4015,0</td>
</tr>
<tr>
<td>48</td>
<td>Jama Zadubravica</td>
<td>Dubrovačko primorje</td>
<td>111,0</td>
<td>108,0</td>
<td>108,0</td>
<td>22550,0</td>
</tr>
<tr>
<td>49</td>
<td>Japaga iznad Kopren dola</td>
<td>Zažablje</td>
<td>8,0</td>
<td>8,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Kaverna 167</td>
<td>Konavle</td>
<td>12,0</td>
<td>0,0</td>
<td>8,0</td>
<td>20,0</td>
</tr>
<tr>
<td>51</td>
<td>Kaverna 180</td>
<td>Konavle</td>
<td>76,0</td>
<td>17,7</td>
<td>22,6</td>
<td>450,0</td>
</tr>
<tr>
<td>52</td>
<td>Kavera 183</td>
<td>Konavle</td>
<td>99,0</td>
<td>0,0</td>
<td>17,6</td>
<td>1180,0</td>
</tr>
<tr>
<td>53</td>
<td>Kavera 781</td>
<td>Konavle</td>
<td>142,0</td>
<td>0,0</td>
<td>16,5</td>
<td>1346,6</td>
</tr>
<tr>
<td>54</td>
<td>Kaverna Duboka Ljuta</td>
<td>Župa dubrovačka</td>
<td>276,5</td>
<td>63,0</td>
<td>80,0</td>
<td>15085,0</td>
</tr>
<tr>
<td>55</td>
<td>Kornjatuša jama</td>
<td>Zažablje</td>
<td>145,0</td>
<td>110,0</td>
<td>110,0</td>
<td>18650,0</td>
</tr>
<tr>
<td>56</td>
<td>Krivača špilja</td>
<td>Dubrovnik</td>
<td>43,0</td>
<td>9,0</td>
<td>9,0</td>
<td>492,0</td>
</tr>
<tr>
<td>57</td>
<td>Kukova peć</td>
<td>Dubrovnik</td>
<td>81,0</td>
<td>22,0</td>
<td>22,0</td>
<td>3592,0</td>
</tr>
<tr>
<td>58</td>
<td>Kuna špilja</td>
<td>Konavle</td>
<td>30,0</td>
<td>3,0</td>
<td>3,0</td>
<td>136,0</td>
</tr>
<tr>
<td>59</td>
<td>Lokva Vidohovo</td>
<td>Orebić</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Mali izvor u selu Glušci</td>
<td>Metković</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Močiljska špilja</td>
<td>Dubrovnik</td>
<td>938,0</td>
<td>138,0</td>
<td>138,0</td>
<td>10660,7</td>
</tr>
<tr>
<td>62</td>
<td>Morska špilja u Rafovoj uvali 1</td>
<td>Dubrovnik</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Pasja jama</td>
<td>Dubrovnik</td>
<td>9,0</td>
<td>8,0</td>
<td>8,0</td>
<td>48,0</td>
</tr>
<tr>
<td>64</td>
<td>Pasja špilja</td>
<td>Konavle</td>
<td>9,0</td>
<td>0,0</td>
<td>0,0</td>
<td>44,6</td>
</tr>
<tr>
<td>RB</td>
<td>Speleološki objekt</td>
<td>Općina</td>
<td>Duljina (m)</td>
<td>Dubina (-m)</td>
<td>Vert. razl. (m)</td>
<td>Volumen (m³)</td>
</tr>
<tr>
<td>----</td>
<td>--------------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>67</td>
<td>Pećina na Velikom Humu</td>
<td>Zažablje</td>
<td>13,0</td>
<td>1,0</td>
<td>0,0</td>
<td>54,5</td>
</tr>
<tr>
<td>68</td>
<td>Pećina u Gaju</td>
<td>Dubrovnik</td>
<td>20,0</td>
<td>4,0</td>
<td>4,0</td>
<td>126,0</td>
</tr>
<tr>
<td>69</td>
<td>Plješina jama</td>
<td>Konavle</td>
<td>418,0</td>
<td>173,0</td>
<td>173,0</td>
<td>120397,0</td>
</tr>
<tr>
<td>70</td>
<td>Ponor Ljute</td>
<td>Konavle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Predpeč</td>
<td>Dubrovnik</td>
<td>11,0</td>
<td>1,0</td>
<td>1,0</td>
<td>46,8</td>
</tr>
<tr>
<td>72</td>
<td>Rafova špilja</td>
<td>Dubrovnik</td>
<td>59,0</td>
<td>0,0</td>
<td></td>
<td>1445,0</td>
</tr>
<tr>
<td>73</td>
<td>Romića vrilo</td>
<td>Kula Norinska</td>
<td>4,0</td>
<td>0,4</td>
<td>0,4</td>
<td>4,8</td>
</tr>
<tr>
<td>74</td>
<td>Sklenica špilja</td>
<td>Konavle</td>
<td>10,0</td>
<td>0,0</td>
<td>0,0</td>
<td>60,0</td>
</tr>
<tr>
<td>75</td>
<td>Sumporiča špilja velika</td>
<td>Dubrovnik</td>
<td>111,0</td>
<td>2,0</td>
<td>2,0</td>
<td>180,0</td>
</tr>
<tr>
<td>76</td>
<td>Šipun špilja</td>
<td>Konavle</td>
<td>90,0</td>
<td>20,0</td>
<td>20,0</td>
<td>3480,0</td>
</tr>
<tr>
<td>77</td>
<td>Šolčina jama</td>
<td>Zažablje</td>
<td>41,0</td>
<td>6,0</td>
<td>6,0</td>
<td>540,0</td>
</tr>
<tr>
<td>78</td>
<td>Špijaturica</td>
<td>Dubrovačko primorje</td>
<td>40,0</td>
<td>22,0</td>
<td>22,0</td>
<td>1400,0</td>
</tr>
<tr>
<td>79</td>
<td>Špilja 1 u uvali Hodoblja</td>
<td>Dubrovačko primorje</td>
<td>55,0</td>
<td>0,0</td>
<td>12,0</td>
<td>1170,0</td>
</tr>
<tr>
<td>80</td>
<td>Špilja ispod Krsta</td>
<td>Dubrovnik</td>
<td>50,0</td>
<td>21,5</td>
<td>21,0</td>
<td>1300,0</td>
</tr>
<tr>
<td>81</td>
<td>Špilja iznad crkvice Gospe od Luga</td>
<td>Konavle</td>
<td>38,0</td>
<td>6,0</td>
<td>11,0</td>
<td>342,0</td>
</tr>
<tr>
<td>82</td>
<td>Špilja iznad Kopren dolu</td>
<td>Zažablje</td>
<td>98,0</td>
<td>15,0</td>
<td>15,0</td>
<td>6875,0</td>
</tr>
<tr>
<td>83</td>
<td>Špilja iznad špilje iznad crkvice Gospe od Luga</td>
<td>Konavle</td>
<td>72,0</td>
<td>24,0</td>
<td>24,0</td>
<td>483,0</td>
</tr>
<tr>
<td>84</td>
<td>Špilja Jezero</td>
<td>Konavle</td>
<td>120,0</td>
<td>47,0</td>
<td>47,0</td>
<td>14300,0</td>
</tr>
<tr>
<td>85</td>
<td>Špilja iznad Omble</td>
<td>Dubrovnik</td>
<td>58,0</td>
<td>3,0</td>
<td>6,0</td>
<td>110,0</td>
</tr>
<tr>
<td>86</td>
<td>Špilja kod Majkova u flišu</td>
<td>Dubrovačko primorje</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Špilja na vrh Toraca</td>
<td>Dubrovnik</td>
<td>65,0</td>
<td>17,0</td>
<td>17,0</td>
<td>1780,0</td>
</tr>
<tr>
<td>88</td>
<td>Špilja od Punta</td>
<td>Konavle</td>
<td>29,0</td>
<td>7,0</td>
<td>7,0</td>
<td>250,0</td>
</tr>
<tr>
<td>89</td>
<td>Špilja Večerčulje</td>
<td>Dubrovnik</td>
<td>45,0</td>
<td>12,0</td>
<td>12,0</td>
<td>1400,0</td>
</tr>
<tr>
<td>90</td>
<td>Špilja za Gromačkom vlakom</td>
<td>Dubrovnik</td>
<td>2407,0</td>
<td>220,0</td>
<td>220,0</td>
<td>83338,3</td>
</tr>
<tr>
<td>91</td>
<td>Tihinja špilja</td>
<td>Ston</td>
<td>16,0</td>
<td>11,0</td>
<td>11,0</td>
<td>57,0</td>
</tr>
<tr>
<td>92</td>
<td>Topli izvor u Zatonu Malom</td>
<td>Dubrovnik</td>
<td>1,0</td>
<td>0,8</td>
<td>0,8</td>
<td>1,0</td>
</tr>
<tr>
<td>93</td>
<td>Traverza kod Miljko vić staja</td>
<td>Dubrovačko primorje</td>
<td>143,0</td>
<td>15,0</td>
<td>15,0</td>
<td>4698,7</td>
</tr>
<tr>
<td>94</td>
<td>Tunel iznad Šumeta 1</td>
<td>Dubrovnik</td>
<td>76,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1520,0</td>
</tr>
<tr>
<td>95</td>
<td>Tunel iznad Šumeta 2</td>
<td>Dubrovnik</td>
<td>274,0</td>
<td>11,7</td>
<td>11,7</td>
<td>5480,0</td>
</tr>
<tr>
<td>96</td>
<td>Tunel iznad Šumeta 3</td>
<td>Dubrovnik</td>
<td>7,6</td>
<td>0,0</td>
<td>0,0</td>
<td>152,0</td>
</tr>
<tr>
<td>97</td>
<td>Tunel iznad Šumeta 4</td>
<td>Dubrovnik</td>
<td>45,0</td>
<td>0,0</td>
<td>0,0</td>
<td>846,6</td>
</tr>
<tr>
<td>98</td>
<td>Tunel Konavosko polje-more</td>
<td>Konavle</td>
<td>1967,0</td>
<td>22,0</td>
<td>22,0</td>
<td>23902,0</td>
</tr>
<tr>
<td>99</td>
<td>Tunel Mihanić 1</td>
<td>Konavle</td>
<td>430,0</td>
<td>3,0</td>
<td>3,0</td>
<td>8600,0</td>
</tr>
<tr>
<td>100</td>
<td>Tunel Mihanić 2</td>
<td>Konavle</td>
<td>38,2</td>
<td>1,0</td>
<td>1,0</td>
<td>764,0</td>
</tr>
<tr>
<td>101</td>
<td>Tunel Mihanić 3</td>
<td>Konavle</td>
<td>253,3</td>
<td>4,4</td>
<td>4,4</td>
<td>5066,0</td>
</tr>
<tr>
<td>102</td>
<td>Tunel na Srđu</td>
<td>Dubrovnik</td>
<td>19,0</td>
<td>2,0</td>
<td>2,0</td>
<td>76,0</td>
</tr>
<tr>
<td>103</td>
<td>Velika jama poviše Tornja</td>
<td>Zažablje</td>
<td>328,0</td>
<td>71,0</td>
<td>71,0</td>
<td>34568,0</td>
</tr>
<tr>
<td>RB</td>
<td>Speleološki objekt</td>
<td>Općina</td>
<td>Duljina (m)</td>
<td>Dubina (-m)</td>
<td>Vert. razl. (m)</td>
<td>Volumen (m³)</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>104</td>
<td>Velika peć 2</td>
<td>Konavle</td>
<td>22,0</td>
<td>0,0</td>
<td>5,0</td>
<td>368,9</td>
</tr>
<tr>
<td>105</td>
<td>Vija peć</td>
<td>Dubrovnik</td>
<td>25,0</td>
<td>4,5</td>
<td>4,5</td>
<td>442,7</td>
</tr>
<tr>
<td>106</td>
<td>Vilenska peć</td>
<td>Dubrovačko primorje</td>
<td>44,0</td>
<td>6,0</td>
<td>6,0</td>
<td>264,0</td>
</tr>
<tr>
<td>107</td>
<td>Vilina špilja-izvor Omblesustav</td>
<td>Dubrovnik</td>
<td>3050,0</td>
<td>191,0</td>
<td>229,0</td>
<td>?</td>
</tr>
<tr>
<td>108</td>
<td>Vilinska špilja</td>
<td>Konavle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Vir kod kapelice Sv. Mihovila</td>
<td>Zažablje</td>
<td>22,0</td>
<td>6,0</td>
<td>6,0</td>
<td>725,0</td>
</tr>
<tr>
<td>110</td>
<td>Vištičina jama</td>
<td>Slivno</td>
<td>322,0</td>
<td>144,0</td>
<td>144,0</td>
<td>45025,0</td>
</tr>
<tr>
<td>111</td>
<td>Vranja jama</td>
<td>Ston</td>
<td>114,0</td>
<td>63,0</td>
<td>63,0</td>
<td>21189,0</td>
</tr>
<tr>
<td>112</td>
<td>Vranja peć</td>
<td>Dubrovačko primorje</td>
<td>188,0</td>
<td>50,0</td>
<td>50,0</td>
<td>14560,0</td>
</tr>
<tr>
<td>113</td>
<td>Vrulja Morašnica</td>
<td>Dubrovačko primorje</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Vrulja Stupski jaz</td>
<td>Dubrovačko primorje</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Zmajeva peć</td>
<td>Dubrovačko primorje</td>
<td>69,0</td>
<td>15,0</td>
<td>15,0</td>
<td>350,0</td>
</tr>
</tbody>
</table>
3.4 Analiza istraživanih speleoloških objekata

3.4.1 Distribucija speleoloških objekata po regijama Županije

Prema području istraživanja, najveći broj speleoloških objekata istraživan je na području Dubrovačkog primorja, njih 39, odnosno gotovo 34%. Na području Neretve i Konavala istraživan je podjednak broj objekata, njih 27 (23,48%), odnosno 28 (24,34%). Na području grada Dubrovnika istraživano je 10 objekata (8,7%), dok je najmanji broj objekata istraživan na području Župe dubrovačke i Pelješca, ukupno njih 11, nešto manje od 10%. Pregled lokaliteta istraživanja po tipu speleološkog objekta predstavljen je u Tablici 3.4.1. i Slici 3.4.1.

Tablica 3.4.1. Distribucija istraživanih speleoloških objekata po regijama Županije.

<table>
<thead>
<tr>
<th>RB</th>
<th>Područje</th>
<th>Broj lokaliteta</th>
<th>Udjel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Delta Neretve</td>
<td>27</td>
<td>23,48</td>
</tr>
<tr>
<td>2</td>
<td>Dubrovačko primorje</td>
<td>39</td>
<td>33,91</td>
</tr>
<tr>
<td>3</td>
<td>Poluotok Pelješac</td>
<td>5</td>
<td>4,35</td>
</tr>
<tr>
<td>4</td>
<td>Grad Dubrovnik</td>
<td>10</td>
<td>8,70</td>
</tr>
<tr>
<td>5</td>
<td>Župa dubrovačka</td>
<td>6</td>
<td>5,22</td>
</tr>
<tr>
<td>6</td>
<td>Konavle sa Sniježnicom</td>
<td>28</td>
<td>24,34</td>
</tr>
<tr>
<td></td>
<td>UKUPNO</td>
<td>115</td>
<td>100</td>
</tr>
</tbody>
</table>

Slika 3.4.1. Distribucija istraživanih speleoloških objekata po regijama Županije.
3.4.2 Подјела спелеолошких објеката према геоморфолошком типу

Истрживано је осам геоморфолошко-идролошких типова спелеолошких објеката: 1) спилја, 2) јама, 3) каверна, 4) подземна грађевина, 5) понор, 6) извор, 7) бунар и 8) вруља. Спилје и јаме доминирају са 64 објекта, односно преко 55%. Затој, са кавернама и подземним грађевинама удјел расте до готово 70%. Простају 30% представљају идролошки активни објекти који су већином истрживани спелеоронилачким методама.

Предложена истрживаних локалитета по типу спелеолошког објекта представљен је у Таблици 3.4.2. и на Слици 3.4.2.

Таблици 3.4.2. Просег у истрживаних локација по типу спелеолошког објекта.

<table>
<thead>
<tr>
<th>RB</th>
<th>Геоморфолошки тип истрживаног објекта</th>
<th>Кратика</th>
<th>Број локалитета</th>
<th>Удјел (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>спилја</td>
<td>s</td>
<td>42</td>
<td>36,52</td>
</tr>
<tr>
<td>2</td>
<td>јама</td>
<td>j</td>
<td>22</td>
<td>19,13</td>
</tr>
<tr>
<td>3</td>
<td>каверна</td>
<td>k</td>
<td>5</td>
<td>4,35</td>
</tr>
<tr>
<td>4</td>
<td>подземна грађевина</td>
<td>pg</td>
<td>9</td>
<td>7,83</td>
</tr>
<tr>
<td>5</td>
<td>понор</td>
<td>p</td>
<td>1</td>
<td>0,87</td>
</tr>
<tr>
<td>6</td>
<td>извор</td>
<td>i</td>
<td>31</td>
<td>26,96</td>
</tr>
<tr>
<td>7</td>
<td>бунар</td>
<td>b</td>
<td>3</td>
<td>2,61</td>
</tr>
<tr>
<td>8</td>
<td>вруља</td>
<td>v</td>
<td>2</td>
<td>1,74</td>
</tr>
<tr>
<td>UKUPNO</td>
<td></td>
<td></td>
<td>115</td>
<td>100</td>
</tr>
</tbody>
</table>

Слика 3.4.2. Просег у истрживаних локалитета по типу спелеолошког објекта.
3.4.3 Podjela speleoloških objekata prema dimenzijama

Raspored SO prema duljini i prema dubini špiljskih kanala je prikazan u Tablicama 3.4.3. i 3.4.4.

Duljina kanala gotovo trećine istraživanih objekata iznosi 50-100 m, dok je nešto više od 18% duljih od 100 m. Oko 75% istraživanih objekata duboko je do 50 m, gotovo 12% ih je dublje od 50 m, dok ostatak objekata nije mogao biti analiziran zbog nedostatka podataka.

Tablica 3.4.3. Podjela SO prema duljini špiljskih kanala.

<table>
<thead>
<tr>
<th>RB</th>
<th>Dimenzije SO (m)</th>
<th>Broj SO</th>
<th>Udjel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>do 10</td>
<td>20</td>
<td>17,39</td>
</tr>
<tr>
<td>2</td>
<td>10-50</td>
<td>23</td>
<td>20,00</td>
</tr>
<tr>
<td>3</td>
<td>50-100</td>
<td>33</td>
<td>28,70</td>
</tr>
<tr>
<td>4</td>
<td>100-500</td>
<td>17</td>
<td>14,78</td>
</tr>
<tr>
<td>5</td>
<td>500-1 km</td>
<td>1</td>
<td>0,87</td>
</tr>
<tr>
<td>6</td>
<td>preko 1 km</td>
<td>3</td>
<td>2,61</td>
</tr>
<tr>
<td>7</td>
<td>nije mjereno</td>
<td>18</td>
<td>15,65</td>
</tr>
<tr>
<td>UK.</td>
<td></td>
<td>115</td>
<td>100</td>
</tr>
</tbody>
</table>

Slika 3.4.3. Podjela speleoloških objekata prema duljini špiljskih kanala (m).

Tablica 3.4.4. Podjela SO prema dubini špiljskih kanala.

<table>
<thead>
<tr>
<th>RB</th>
<th>Dubina SO (m)</th>
<th>Broj SO</th>
<th>Udjel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>do 10</td>
<td>28</td>
<td>24,35</td>
</tr>
<tr>
<td>2</td>
<td>10-50</td>
<td>58</td>
<td>50,43</td>
</tr>
<tr>
<td>3</td>
<td>50-100</td>
<td>5</td>
<td>4,35</td>
</tr>
<tr>
<td>4</td>
<td>100-200</td>
<td>7</td>
<td>6,09</td>
</tr>
<tr>
<td>5</td>
<td>preko 200</td>
<td>1</td>
<td>0,87</td>
</tr>
<tr>
<td>6</td>
<td>nije mjereno</td>
<td>16</td>
<td>13,91</td>
</tr>
<tr>
<td>UK.</td>
<td></td>
<td>115</td>
<td>100</td>
</tr>
</tbody>
</table>
3.4.4 Podjela speleoloških objekata prema nadmorskoj visini ulaza

Većina istraživanih speleoloških objekata smještena je na nadmorskoj visini do 300 m, njih 86, odnosno oko 70%. Do 500 m je daljnjih 17, odnosno oko 15%, dok je iznad 500 m istraživano također 17 objekata odnosno oko 15%. Podjela speleoloških objekata prema nadmorskoj visini ulaza predstavljena je u Tablici 3.4.5. i Slici 3.4.5.

Tablica 3.4.5. Podjela speleoloških objekata prema nadmorskoj visini ulaza.

<table>
<thead>
<tr>
<th>RB</th>
<th>Nadmorska visina (nm)</th>
<th>Broj SO</th>
<th>Udjel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>do 10</td>
<td>25</td>
<td>21,74</td>
</tr>
<tr>
<td>2</td>
<td>10 - 100</td>
<td>19</td>
<td>16,52</td>
</tr>
<tr>
<td>3</td>
<td>100 - 200</td>
<td>16</td>
<td>13,91</td>
</tr>
<tr>
<td>4</td>
<td>200 - 300</td>
<td>21</td>
<td>18,26</td>
</tr>
<tr>
<td>5</td>
<td>300 - 400</td>
<td>10</td>
<td>8,7</td>
</tr>
<tr>
<td>6</td>
<td>400 - 500</td>
<td>7</td>
<td>6,09</td>
</tr>
<tr>
<td>7</td>
<td>500 - 600</td>
<td>3</td>
<td>2,61</td>
</tr>
<tr>
<td>8</td>
<td>600 - 700</td>
<td>4</td>
<td>3,48</td>
</tr>
<tr>
<td>9</td>
<td>700 - 800</td>
<td>2</td>
<td>1,74</td>
</tr>
<tr>
<td>10</td>
<td>800 - 900</td>
<td>1</td>
<td>0,87</td>
</tr>
<tr>
<td>11</td>
<td>900 - 1000</td>
<td>4</td>
<td>3,48</td>
</tr>
<tr>
<td>12</td>
<td>visina ulaza nije mjerena</td>
<td>3</td>
<td>2,61</td>
</tr>
</tbody>
</table>

**Ukupno**: 115 100

Slika 3.4.4. Podjela speleoloških objekata prema dubini špiljskih kanala (m).
Podjela speleoloških objekata prema nadmorskoj visini ulaza.

3.4.5 Speleološki objekti u okviru ekološke mreže Natura 2000

U okviru ekološke mreže Natura 2000 i njezinog područja „HR2001010 Paleoombla – Ombla“ nalazi se 12 speleoloških objekata predstavljenih u Tablici 3.4.6. Na samom rubu područja, ali na žalost ne i u njemu, nalazi se više objekata, a svakako bi u obuhvat područja trebala ući četiri iznimna speleološka objekta: Aragonka i Debela ljut kod sela Ljubać, Sumporne špilje kod Mokošice uz Rijeku dubrovačku te geomorfološki spomenik prirode, Špilja za Gromačkom vlakom iznad sela Gromača.

Dodatnim speleološkim rekognosciranjem terena vjerojatno bi se otkrili za sada nepoznati speleološki objekti područja Paleoombla, za koje se mogu očekivati zanimljivi nalazi bogate špiljske faune.

Tablica 3.4.6. Pregled speleoloških objekata smještenih u okviru ili u neposrednoj blizini granice ekološke mreže Natura 2000 i njezinog područja „HR2001010 Paleoombla – Ombla“ (R: nalazi se na rubu NEM područja, ali ne u njemu)

<table>
<thead>
<tr>
<th>RB</th>
<th>Speleološki objekt</th>
<th>U okviru EM*</th>
<th>Istraživano u okviru projekta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aragonka</td>
<td>R</td>
<td>DA</td>
</tr>
<tr>
<td>2</td>
<td>Banova ljut</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>3</td>
<td>Debela ljut</td>
<td>R</td>
<td>DA</td>
</tr>
<tr>
<td>4</td>
<td>Jama na vrh Vrguda</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>5</td>
<td>Jama u Lovorikama</td>
<td>DA</td>
<td>NE</td>
</tr>
<tr>
<td>6</td>
<td>Jama u Zabiradu</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>7</td>
<td>Krivača špilja</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>8</td>
<td>Močiljska špilja</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>9</td>
<td>Polušpilja s kozom</td>
<td>DA</td>
<td>NE</td>
</tr>
<tr>
<td>10</td>
<td>Predpeć</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>11</td>
<td>Sumporače špilje</td>
<td>R</td>
<td>DA</td>
</tr>
<tr>
<td>12</td>
<td>Špilja ispod Krsta</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>13</td>
<td>Špilja iznad Omble</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>14</td>
<td>Špilja za Gromačkom vlakom</td>
<td>R</td>
<td>DA</td>
</tr>
<tr>
<td>15</td>
<td>Špilja u Gaju</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>16</td>
<td>Sustav Vilina špilja-izvor Omble</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>UK.</td>
<td>16 SO</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

Slika 3.4.5. Podjela speleoloških objekata prema nadmorskoj visini ulaza.
4 Bioraznolikost istraživanih špiljskih objekata

4.1 Uvod

Sumarna analiza svih sakupljenih i determiniranih špiljskih organizama iz istraživanih 115 speleoloških objekata u okviru projekta tijekom prve godine istraživanja, predstavljena je u Tablici 4.1.1.

Tablica 4.1.1. Sumarni pregled rezultata prve godine istraživanja u okviru projekta (Tb – troglobiont (vrsta strogo vezana za kopnena špiljska staništa), Sb – stigobiont (vrsta strogo vezana za vodena špiljska staništa).

<table>
<thead>
<tr>
<th>Brojnost</th>
<th>Ukupno</th>
<th>Tb i Sb</th>
<th>Udjel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determiniranih nalaza</td>
<td>2534</td>
<td>1329</td>
<td>52,45</td>
</tr>
<tr>
<td>Određenih taksonomskih svojti</td>
<td>582</td>
<td>253</td>
<td>43,47</td>
</tr>
<tr>
<td>Utvrđenih endemičnih svojti</td>
<td>242</td>
<td>192</td>
<td>79,34</td>
</tr>
<tr>
<td>Za znanost potencijalno novih taksonomskih svojti</td>
<td>48</td>
<td>45</td>
<td>93,75</td>
</tr>
</tbody>
</table>

Od cjelokupnog sakupljenog materijala iz speleoloških objekata, determinirano je ukupno 2534 nalaza (ne primjeraka), od čega je preko 52% špiljskih organizama, troglobionata i stigobionata. Određene su ukupno 582 taksonomske svojte, od čega 253 taksonomskih svojti, odnosno preko 43%, špiljskih organizama, troglobionata i stigobionata.

Utvrđene su čak 242 endemične taksonomske svojte, odnosno oko 41,5%, od kojih je preko 79% troglobionata i stigobionata. Udjel endemičnih taksonomskih svojti u ukupnom broju troglobionata i stigobionata je preko 75%.

Utvrđeno je 48 novih taksonomskih svojti za znanost, odnosno oko 8,25% ukupnih taksonomskih svojti, pri čemu je broj novih taksonomskih svojti kod troglobionata i stigobionata apsolutno najizraženiji i s 45 svojti čini udjel od preko 93% od svih novih taksonomskih svojti. Udjel novih taksonomskih svojti u ukupnom broju špiljskih vrsta, troglobionata i stigobionata je preko 17%.

Podjela nalaza prema 22 taksonomske skupine predstavljena je u Tablici 4.1.2. Podjela nalaza troglobionata i stigobionata iz 19 taksonomskih skupina podijeljenih prema tri osnovne grupe speleoloških objekata: suhih, u kojima su prisutna isključivo kopnena špiljska staništa; djelomično potopljenih, u kojima su zastupljena i vodena i kopnena špiljska staništa te potopljenih, u kojima dominiraju vodena špiljska staništa, predstavljena je u Tablici 4.1.3.

Analiza sakupljenih taksonomskih skupina ukazuje kako su najzastupljenija taksonomska skupina utvrđena u 81 speleološkom objektu puževi (Gastropoda), a slijede jednakonožni rakovi (Isopoda) koji su utvrđeni u 68 speleoloških objekata, pa kornjaši (Coleoptera) u 61 speleološkom objektu te naposljetku skokuni (54), predstavnici pauka (Araneae) (53), te gljive (Fungi) u 46. U više od 30 speleoloških objekata nađene su skupine dvojenoga (Diplopora) (47), lažistipavaca (Pseudoscorpiones) (41) i lažipauka (Opiliones) (33) i grinje (Acari) (30). Ove skupine dakako prevladavaju i po broju nalaza, od lažipauka (99) do puževa (474).
Po broju utvrđenih taksonomskih svojti dominiraju gljive s 146 svojti, a slijede puževi s 102, kornjaši sa 64 svojte, pauci s 23, pa tek onda gljive, jednakonožni rakovi sa 35 i grinje (Acari) sa 30.

Po broju endema vodeće tri taksonomske grupe s po 34 endemične svojte su puževi, slijede kornjaši i lažištipavci s 32 svojte, pa pauci s 23, pa tek onda gljive, jednakonožni rakovi, rakušci (Amphipoda), dvojenoge (Diplopoda) i drugi.

Konačno, brojem za znanost novih taksonomskih svojti dominiraju gljive i lažištipavci s 10, odnosno 11 svojti, zatim slijede dvojenoge (7), pauci (6), kornjaši (4), skokuni (Collembola) (4), jednakonožni rakovi (4), lažipauci (3), puževi (1) i dvorepci (Diplura) (1), dok ostale grupe nemaju novih svojti.

Analiza podataka sakupljene samo špiljske faune prema tri osnovne grupe speleoloških objekata na osnovi prisutnih staništa (kopnena, vodena i kombinirana) ukazuje kako je najveći broj špiljskih svojti, njih 128, odnosno preko 64% cjelokupnog broja špiljske faune, što je i logično zbog postojanja i kopnenih i vodenih staništa. Slijede potopljeni objekti s 99 svojti, pa suhi sa 70 svojti.

Tablica 4.1.2. Sumarna analiza sakupljenih organizama po taksonomskim skupinama.
Tablica 4.1.3. Sumarna analiza troglobionata i stigobionata iz 19 taksonomskih skupina, razvrstanih po osnovna tri tipa istraživanih speleoloških objekata.

<table>
<thead>
<tr>
<th>Taksonomska skupina</th>
<th>Broj</th>
<th>Acari</th>
<th>Amphibia</th>
<th>Amphipoda</th>
<th>Araneae</th>
<th>Bivalvia</th>
<th>Coleoptera</th>
<th>Collembola</th>
<th>Cyclopoda</th>
<th>Decapoda</th>
<th>Diplapoda</th>
<th>Diplura</th>
<th>Fungi</th>
<th>Gastropoda</th>
<th>Isopoda</th>
<th>Labridae</th>
<th>Opiliones</th>
<th>Polychaeta</th>
<th>Pseudoscorpiones</th>
<th>Turbellaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>svi objekti SO</td>
<td>16</td>
<td>1</td>
<td>18</td>
<td>46</td>
<td>5</td>
<td>48</td>
<td>10</td>
<td>1</td>
<td>6</td>
<td>33</td>
<td>9</td>
<td>29</td>
<td>42</td>
<td>46</td>
<td>3</td>
<td>17</td>
<td>10</td>
<td>36</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Nalaza</td>
<td>28</td>
<td>1</td>
<td>43</td>
<td>145</td>
<td>5</td>
<td>180</td>
<td>41</td>
<td>1</td>
<td>16</td>
<td>112</td>
<td>27</td>
<td>108</td>
<td>95</td>
<td>184</td>
<td>5</td>
<td>34</td>
<td>10</td>
<td>113</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Svojti</td>
<td>11</td>
<td>1</td>
<td>15</td>
<td>19</td>
<td>1</td>
<td>27</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>13</td>
<td>4</td>
<td>18</td>
<td>15</td>
<td>19</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>29</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Endema</td>
<td>9</td>
<td>1</td>
<td>11</td>
<td>18</td>
<td>1</td>
<td>27</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>11</td>
<td>4</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>27</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Novih svojti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>potopljeni objekti SO</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nalaza</td>
<td>3</td>
<td>1</td>
<td>24</td>
<td>26</td>
<td>5</td>
<td>41</td>
<td>7</td>
<td>1</td>
<td>16</td>
<td>21</td>
<td>3</td>
<td>17</td>
<td>53</td>
<td>55</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>22</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Svojti</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>14</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>14</td>
<td>14</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Endema</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>14</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Novih svojti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>djelokom potopljeni SO</td>
<td>11</td>
<td>0</td>
<td>6</td>
<td>24</td>
<td>0</td>
<td>24</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>5</td>
<td>16</td>
<td>11</td>
<td>26</td>
<td>3</td>
<td>14</td>
<td>0</td>
<td>20</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nalaza</td>
<td>21</td>
<td>0</td>
<td>14</td>
<td>79</td>
<td>0</td>
<td>100</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>21</td>
<td>58</td>
<td>13</td>
<td>99</td>
<td>5</td>
<td>29</td>
<td>0</td>
<td>64</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Svojti</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>0</td>
<td>22</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>4</td>
<td>18</td>
<td>2</td>
<td>14</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Endema</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>0</td>
<td>22</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>14</td>
<td>2</td>
<td>11</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Novih svojti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>sami objekti SO</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>16</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Nalaza</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>38</td>
<td>0</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>1</td>
<td>30</td>
<td>12</td>
<td>27</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Svojti</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Endema</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Novih svojti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
4.2 Popis utvrđenih špiljskih svojti po speleološkim objektima

U ovom poglavlju predstavljen je popis špiljskih svojti, odnosno troglobionata (Tb) i stigobionata (Sb), utvrđenih za svaki istraživani speleološki objekt. Za istraživane objekte u kojima nije utvrđena špiljska fauna to je navedeno. Oznaka (*) pored imena objekta indicira da se radi o objektu koje je tipsko nalazište za barem jednu svojtu, dok ista oznaka pokraj imena svojte indicira da je objekt njezino tipsko nalazište.

4.2.1 Aragonka špilja

Tablica 4.2.1. Aragonka špilja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Leptonetidae</td>
<td><em>Barusia</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagtit hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Ageleinitidae</td>
<td><em>Histopona duxia</em> (Absolon &amp; Kratochvil, 1932)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td><em>Verhoeffia longicornis</em> (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Onychiuriidae</td>
<td><em>Onychiurioides</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes</em> (Speonesiotes) narentinus latitarsis* (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td><em>Pholeoteras euthrix</em> Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Cyphonethes hercegovinensis</em> (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Cyphoniscellus hercegovinensis</em> (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Opiliones, Travuniidae</td>
<td><em>Travunia anophthalma</em> Absolon &amp; Kratochvil, 1927</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius</em> (Chthonius) trebinjensis* Beier, 1938</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.2 Banova ljut špilja

Tablica 4.2.2. Banova ljut špilja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Leptonetidae</td>
<td><em>Barusia</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagtit hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td><em>Novakia</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td><em>Neotrechus suturalis otiosus</em> Obenberger, 1917</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes</em> (Speonesiotes) narentinus latitarsis* (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Bathyscidius tristiculus</em> (Apfelbeck 1905) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td><em>Pholeoteras euthrix</em> Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Pristilomatidae</td>
<td><em>Vitreza zilch</em> L. Pinter, 1972</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Milacidae</td>
<td><em>Tandonia cavicola</em> (Simroth 1916)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Cyphonethes hercegovinensis</em> (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Opiliones, Travuniidae</td>
<td><em>Travunia anophthalma</em> Absolon &amp; Kratochvil, 1927</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius</em> (Chthonius) trebinjensis* Beier, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Pidoplitchkoviella</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Pseudogymnnoascus Raill</em> sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Trichurus</em> sp. nov. (sp1)</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.3 Bezdanka*

Tablica 4.2.3. Bezdanka.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplura, Campodeidae</td>
<td><em>Plusiocampa (Stygiocampa) remyi</em> Conde, 1947</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Pholeunella erberii</em> (Schaufuss 1862) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td><em>Verhoeffiella longicornis</em> (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Aegonethes cervinus</em> (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius (Chthonius) croaticus</em> Ćurčić &amp; Rada, 2012*</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Troglochthonius mirabilis</em> Beier, 1939</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td><em>Roncus ragusae</em> Ćurčić &amp; Rada, 2012*</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Hirsutella</em> sp. nov.</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.4 Bunar na zemlji Ilije Plećaša

Nisu utvrđeni špiljski organizmi.

4.2.5 Bunar na zemlji Mire Volarevića

Tablica 4.2.4. Bunar na zemlji Mire Volarevića.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibia, Caudata, Proteidae</td>
<td><em>Proteus anguinus anguinus</em> Laurenti, 1768</td>
<td>Sb</td>
</tr>
</tbody>
</table>

4.2.6 Bunar na zemlji Vice Jakića

Nisu utvrđeni špiljski organizmi.

4.2.7 Čekrk jama

Tablica 4.2.5. Čekrk jama.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td><em>Neotrechus dalmatinus</em> (L. Miller, 1861)</td>
<td>Tb</td>
</tr>
<tr>
<td>Decapoda, Atyidae</td>
<td><em>Troglocaris (Troglocaris) anophthalmus periadiatriaca</em> Jugovic, Jalžić, Prevorčnik &amp; Sket, 2012</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Vertiginidae</td>
<td><em>Spelaeoconcha paganettii polymorpha</em> A.J. Wagner, 1914</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Penicillium</em> Link (spec. nov. - sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Cephalotrichum</em> sp. nov. (sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Hypocreaceae</em> De. Not. sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Onygenales</em> Cif. ex Benny &amp; Kimbr. sp3</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Pseudogymnoascus</em> Raitlo sp2</td>
<td>Tb?</td>
</tr>
</tbody>
</table>

**4.2.8 Debela ljut špilja**

Tablica 4.2.6. Debela ljut špilja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td><em>Verhoeffiella longicornis</em> (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td><em>Pholeoteras euthrix</em> Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Cyphonethes herzegovinensis</em> (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Opiliones, Sironidae</td>
<td><em>Cyphophthalmus</em> sp.</td>
<td>Tb</td>
</tr>
</tbody>
</table>

**4.2.9 Donji izvor u Glušcima**

Nisu utvrđeni špiljski organizmi.

**4.2.10 Durovića jama***

Tablica 4.2.7. Durovića jama.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Typhlornhode</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td><em>Neotrechus saturalis otiosus</em> Obenberger, 1917</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes (Speonesiotes) narentinus latitarsis</em> (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td><em>Novakia</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td><em>Troglamaurops scheibeli</em> (G. Müller, 1944)*</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Glomeridellida</td>
<td><em>Typhloglomeris coeca</em> Verhoeff, 1898</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td><em>Pholeoteras euthrix</em> Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Milacidiae</td>
<td><em>Tandonia cavicola</em> (Simroth 1916)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Aegonethes cervinus</em> (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Opiliones, Travuniiidae</td>
<td><em>Abasola troglodytes</em> (Roewer, 1915)*</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobiidae</td>
<td><em>Roncus</em> sp. nov.2</td>
<td>Tb</td>
</tr>
</tbody>
</table>
4.2.11 Glogova jama*

Tablica 4.2.8. Glogova jama.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Rhagidiidae</td>
<td>Traegaardhia dalmatina (Willmann 1939)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td>Troglohyphantes lesserti Kratochvil, 1935</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td>Troglohyphantes pugnax Deeleman-Reinhold, 1978</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td>Verhoeffiella media (Loks &amp; Bogojević, 1967)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Minosphaenops croaticus Lohaj et Jalžič, 2009*</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus ottonis Reitter, 1905</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus hilfi (Reitter 1903) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiiodidae</td>
<td>Blattochaeta marianii kustjanovici Polak et Jalžič, 2009*</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiiodidae</td>
<td>Antroherpon matulici (Reitter, 1903)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td>Seracamaurops cadmei Pavičević &amp; Ozimec, 2013</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Pristilomatidae</td>
<td>Vitrea zilchi L. Pinter, 1972</td>
<td>Tb</td>
</tr>
<tr>
<td>Oligochaeta, Enchytraeidae</td>
<td>Enchytraeidae, Gen/sp</td>
<td>Sb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Neobisium (Blothrus) vachoni Beier, 1939</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.12 Gornji izvor u Glušcima

Tablica 4.2.9. Gornji izvor u Glušcima.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipoda, Niphargidae</td>
<td>Niphargus kolombatovici S.Karaman 1950</td>
<td>Sb</td>
</tr>
<tr>
<td>Decapoda, Atyidae</td>
<td>Troglocaris (Troglocaris) anophthalmus periaedriatica Jugovic,</td>
<td>Sb</td>
</tr>
<tr>
<td></td>
<td>Jalžič, Prevorčnik &amp; Sket, 2012</td>
<td></td>
</tr>
</tbody>
</table>

4.2.13 Gusarska spilja

Tablica 4.2.10. Gusarska spilja

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Rhagidiidae</td>
<td>Traegaardhia dalmatina (Willmann 1939)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td>Troglohyphantes lesserti Kratochvil, 1935</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Pholcidae</td>
<td>Stygopholcus skotophilus montenegrinus Kratochvil 1940</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td>Centromerus sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td>Troglohyphantes sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Oncopoduridae</td>
<td>Oncopodura jugoslavica Absolon &amp; Kseneman 1932</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td>Verhoeffiella cf. longicornis (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td>Verhoeffiella media (Loks &amp; Bogojević, 1967)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus suturalis otiosus Obenberger, 1917</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td><em>Neotrechus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leioidae</td>
<td><em>Pohleunella erberii</em> (Schauffuss 1862) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leioidae</td>
<td><em>Speonesiotes (Speonesiotes) narentinus</em> (Miller 1861) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leioidae</td>
<td><em>Speonesiotes (Kulzeria)</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leioidae</td>
<td><em>Laneyriella</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td><em>Brachydesmus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Carychidae</td>
<td><em>Zospeum amoenum</em> (Frauenfeld, 1856)</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Pristilomatidae</td>
<td><em>Vitrea zilchi</em> L. Pinter, 1972</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Cyphonethes herzegovinensis</em> (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Opiliones, Sironidae</td>
<td><em>Cyphophthalmus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobiidae</td>
<td><em>Neobisium (Blothrus) hypochthon</em> Beier, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Mycelia Sterilia</td>
<td><em>Mycelia sterilia</em> sp7</td>
<td>Tb?</td>
</tr>
<tr>
<td>Mycelia Sterilia</td>
<td><em>Mycelia sterilia</em> sp9</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Hirsutella</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Beauveria</em> Vuill. sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Penicillium</em> Link (spec. nov. - sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Cephalotrichum</em> sp. nov.(sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Gymnoascus</em> sp3 (<em>chlamydosporus</em> Matočec &amp; I. Kušan n. prov.)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Nannizziospora</em> sp nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Ascomycota</em> Caval.- Sm. sp3</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Ascomycota</em> Caval.- Sm. sp4</td>
<td>Tb?</td>
</tr>
</tbody>
</table>

**4.2.14 Izvor Badžula**

Tablica 4.2.11. Izvor Badžula.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Belgrandia torifera</em> Schütt, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Polychaeta, Sabellida</td>
<td><em>Marifugia cavatica</em> Absolon &amp; Hrabe, 1930</td>
<td>Sb</td>
</tr>
</tbody>
</table>

**4.2.15 Izvor Bijeli Vir**

Tablica 4.2.12. Izvor Bijeli Vir.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Saxurinator brandti</em> Schütt, 1968</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Plagigeyeria robusta asculpta</em> Schütt, 1972</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Hauffenia edlaueri</em> (Schütt, 1961)</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Iglica (Iglica) absoloni</em> (A. J. Wagner, 1914)</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Lanzaia vjetrenicae kusceri</em> Karaman, 1954</td>
<td>Sb</td>
</tr>
<tr>
<td>Bivalvia, Dreissenidae</td>
<td><em>Congeria kusceri</em> Bole, 1962</td>
<td>Sb</td>
</tr>
</tbody>
</table>
Viša taksonomska kategorija | Svojta | Ekol.
---|---|---
Polychaeta, Sabellida | *Marifugia cavatica* Absolon & Hrabe, 1930 | Sb

### 4.2.16 Izvor Bosna

Tablica 4.2.13. Izvor Bosna.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Belgrandia torifera</em> Schüt, 1961</td>
<td>Sb</td>
</tr>
</tbody>
</table>

### 4.2.17 Izvor Čatrnja

Nisu utvrđeni špiljski organizmi.

### 4.2.18 Izvor Duboka Ljuta


<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Belgrandia torifera</em> Schüt, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Lanzaia vjetrenicae vjetrenicae</em> Kuščer, 1933</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Lanzaia vjetrenicae latecostata</em> Schüt, 1968*</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Plagigeyeria robusta asculpta</em> Schüt, 1968*</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Hauffenia plana</em> Bole, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Iglica (Iglica) absoloni</em> (A. J. Wagner, 1914)</td>
<td>Sb</td>
</tr>
</tbody>
</table>

### 4.2.19 Izvor između Točionika i Lisca

Nisu utvrđeni špiljski organizmi.

### 4.2.20 Izvor Luncijata

Nisu utvrđeni špiljski organizmi.

### 4.2.21 Izvor Ljute Konavoske

Tablica 4.2.15. Izvor Ljute Konavoske.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triladida, Dendrocoelidae</td>
<td><em>Dendrocoelum kenki</em> de Beauchamp 1937</td>
<td>Sb</td>
</tr>
<tr>
<td>Amphipoda, Niphargidae</td>
<td><em>Niphargus kusceri</em> S.Karaman 1950</td>
<td>Sb</td>
</tr>
<tr>
<td>Amphipoda, Niphargidae</td>
<td><em>Niphargus</em> sp.</td>
<td>Sb</td>
</tr>
<tr>
<td>Diplopoda, Julidae</td>
<td><em>Typhloiulus psilonotus</em> (Latzel 1884)</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Belgrandia torifera</em> Schüt, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Pristilomatidae</td>
<td><em>Vitrea zilchi</em> L. Pinter, 1972</td>
<td>Tb</td>
</tr>
</tbody>
</table>
4.2.22 Izvor na zemlji Grge Jurića

Tablica 4.2.16. Izvor na zemlji Grge Jurića.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Iglica (Iglica) absoloni (A. J. Wagner, 1914)</td>
<td>Sb</td>
</tr>
</tbody>
</table>

4.2.23 Izvor Obli vir

Nisu utvrđeni špiljski organizmi.

4.2.24 Izvor Palata

Tablica 4.2.17. Izvor Palata.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipoda, Niphargidae</td>
<td>Niphargus kolombatovici S.Karaman 1950</td>
<td>Sb</td>
</tr>
<tr>
<td>Bivalvia, Dreissenidae</td>
<td>Congeria kusceri Bole, 1962</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Iglica (Iglica) absoloni (A. J. Wagner, 1914)</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Belgrandia torifera Schütt, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Polychaeta, Sabellida</td>
<td>Marifugia cavatica Absolon &amp; Hrabe, 1930</td>
<td>Sb</td>
</tr>
</tbody>
</table>

4.2.25 Izvor Prud

Tablica 4.2.18. Izvor Prud.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivalvia, Dreissenidae</td>
<td>Congeria kusceri Bole, 1962</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Hauffenia plana Bole, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Orientalina troglobia (Bole, 1961)</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Plagigeysteria robusta asculpta Schütt, 1972</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Iglica (Iglica) absoloni (A. J. Wagner, 1914)</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Lanzaia vjetrenicae vjetrenicae Kuščer, 1933</td>
<td>Sb</td>
</tr>
<tr>
<td>Polychaeta, Sabellida</td>
<td>Marifugia cavatica Absolon &amp; Hrabe, 1930</td>
<td>Sb</td>
</tr>
</tbody>
</table>

4.2.26 Izvor Smokovijenac

Tablica 4.2.19. Izvor Smokovijenac.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Lanzaia vjetrenicae kusceri Karaman, 1954</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Belgrandia torifera Schütt, 1961</td>
<td>Sb</td>
</tr>
</tbody>
</table>

4.2.27 Izvor Studenac

Nisu utvrđeni špiljski organizmi.
4.2.28 Izvor špilja kod bunkera
Nisu utvrđeni špiljski organizmi.

4.2.29 Izvor špilja kod kapelice Sv. Mihovil
Tablica 4.2.20. Izvor špilja kod kapelice Sv. Mihovil.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipoda, Niphargidae</td>
<td><em>Niphargus kolombatovici</em> S.Karaman 1950</td>
<td>Sb</td>
</tr>
<tr>
<td>Amphipoda, Niphargidae</td>
<td><em>Niphargus salomitanus</em> S.Karaman 1950</td>
<td>Sb</td>
</tr>
<tr>
<td>Amphipoda, Hadziidae</td>
<td><em>Hadzia fragilis</em> Karaman, S., 1932</td>
<td>Sb</td>
</tr>
<tr>
<td>Bivalvia, Dreissenidae</td>
<td><em>Congeria kusceri</em> Bole, 1962</td>
<td>Sb</td>
</tr>
<tr>
<td>Decapoda, Atyidae</td>
<td><em>Troglocaris (Troglocaris) anophthalmus peria Adriatica</em> Jugovic,</td>
<td>Sb</td>
</tr>
<tr>
<td></td>
<td>Jalžić, Prevorčnik &amp; Sket, 2012</td>
<td></td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Belgrandia torifera</em> Schütt, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Isopoda aquatica, Cirolanidae</td>
<td><em>Sphaeromides virei virei</em> Brian 1923</td>
<td>Sb</td>
</tr>
<tr>
<td>Polychaeta, Sabellida</td>
<td><em>Marifugia cavatica</em> Absolon &amp; Hrabe, 1930</td>
<td>Sb</td>
</tr>
</tbody>
</table>

4.2.30 Izvor špilja poviše Oblog vira
Nisu utvrđeni špiljski organizmi.

4.2.31 Izvor Topolac
Nisu utvrđeni špiljski organizmi.

4.2.32 Izvor u Mislinama
Nisu utvrđeni špiljski organizmi.

4.2.33 Izvor u Mliništu
Tablica 4.2.21. Izvor u Mliništu

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Iglica (Iglica) absoloni</em> (A. J. Wagner, 1914)</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Lanzaia vjetrenicae vjetrenicae</em> Kuščer, 1933</td>
<td>Sb</td>
</tr>
<tr>
<td>Isopoda aquatica, Cirolanidae</td>
<td><em>Sphaeromides virei virei</em> Brian 1923</td>
<td>Sb</td>
</tr>
<tr>
<td>Polychaeta, Sabellida</td>
<td><em>Marifugia cavatica</em> Absolon &amp; Hrabe, 1930</td>
<td>Sb</td>
</tr>
</tbody>
</table>

4.2.34 Izvor u selu Duba Konavoska
Nisu utvrđeni špiljski organizmi.
4.2.35 Izvor Ugor

Tablica 4.2.22. Izvor Ugor

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipoda, Niphargidae</td>
<td><em>Niphargus hvarensis</em> S.Karaman 1952</td>
<td>Sb</td>
</tr>
<tr>
<td>Decapoda, Atyidae</td>
<td><em>Troglocaris (Troglocaris) anophthalmus peradiatrica</em> Jugovic, Jaljić, Prevorčnik &amp; Sket, 2012</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Plagiyeyeria robusta asculpta</em> Schütt, 1972</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Belgrandia torifera</em> Schütt, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Orientalina troglobia</em> (Bole, 1961)</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Horatia (Horatia) knorri</em> Schutt, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Hauffenia plana</em> Bole, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>İglica (Rhaphica) bagliviaeformis</em> Schütt, 1970</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Lanzaia vjetrenicae kusceri</em> Karaman, 1954</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Lanzaia vjetrenicae vjetrenicae</em> Kuščer, 1933</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Saxurinator brandti</em> Schütt, 1968</td>
<td>Sb</td>
</tr>
<tr>
<td>Polychaeta, Sabellida</td>
<td><em>Marifugia cavatica</em> Absolon &amp; Hrabe, 1930</td>
<td>Sb</td>
</tr>
</tbody>
</table>

4.2.36 Izvor Vrilo

Tablica 4.2.23. Izvor Vrilo

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipoda, Niphargidae</td>
<td><em>Niphargus hvarensis</em> S.Karaman 1952</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Belgrandia torifera</em> Schütt, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Hauffenia plana</em> Bole, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>İglica (Rhaphica) bagliviaeformis</em> Schütt, 1970</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Lanzaia vjetrenicae kusceri</em> Karaman, 1954</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Lanzaia vjetrenicae vjetrenicae</em> Kuščer, 1933</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Saxurinator brandti</em> Schütt, 1968</td>
<td>Sb</td>
</tr>
</tbody>
</table>

4.2.37 Izvor Žeginjac

Nisu utvrđeni špiljski organizmi.

4.2.38 Izvorište Slavljan

Tablica 4.2.24. Izvorište Slavljan.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes (Speonesiotes) sp.</em></td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Belgrandia torifera</em> Schütt, 1961</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>İglica (Rhaphica) bagliviaeformis</em> Schütt, 1970</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Lanzaia vjetrenicae kusceri</em> Karaman, 1954</td>
<td>Sb</td>
</tr>
</tbody>
</table>
### 4.2.39 Jama kod groblja

Tablica 4.2.25. Jama kod groblja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphoniscellus herzegowinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Cephalotrichum sp. nov. (sp1)</td>
<td>Tb</td>
</tr>
</tbody>
</table>

### 4.2.40 Jama na gomilama


<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Labidostommatidae</td>
<td>Nicoletiella sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Speonesiotes sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td>Tychobythinus neumanni (J. Müller, 1909)</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td>Brachydesmus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniscus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphonethes herzegowinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Chthonius) trebinjensis Beier, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Penicillium Link (spec. nov. - sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Cephalotrichum sp. nov. (sp1)</td>
<td>Tb</td>
</tr>
</tbody>
</table>

### 4.2.41 Jama na Kunku

Tablica 4.2.27. Jama na Kunku.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Speonesiotes (Speonesiotes) narentinus latitarsis (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td>Brachydesmus stygivagus Verhoeff, 1899</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td>Pholeoteras euthrix Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphonethes herzegowinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Hirsutella sp. nov.</td>
<td>Tb</td>
</tr>
</tbody>
</table>

### 4.2.42 Jama na vrh Krčevina

Tablica 4.2.28. Jama na vrh Krčevina.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Agelenidae</td>
<td>Histopona dubia (Absolon &amp; Kratochvil, 1932)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Leptonetidae</td>
<td>Sulcia occulta Kratochvil, 1938</td>
<td>Tb</td>
</tr>
</tbody>
</table>
Viša taksonomska kategorija | Svojta | Ekol.
--- | --- | ---
Coleoptera, Leiodidae | Speonesiotes (Speonesiotes) narentinus latitarsis (Apfelbeck, 1919) | Tb
Diplopoda, Polyxenidae | Polyxenus sp. nov.? | Tb?

4.2.43 Jama na vrh Prodoli

Tablica 4.2.29. Jama na vrh Prodoli.

Viša taksonomska kategorija | Svojta | Ekol.
--- | --- | ---
Diplopoda, Polydesmidae | Brachydesmus sp. | Tb
Diplopoda, Paradoxosomatidae | Paradoxosomatidae, Gen/sp1 | Tb?

4.2.44 Jama na vrh Vrguda

Tablica 4.2.30. Jama na vrh Vrguda.

Viša taksonomska kategorija | Svojta | Ekol.
--- | --- | ---
Araneae, Dysderidae | Stalagia hercegovinensis (Nosek, 1905) | Tb
Araneae, Linyphiidae | Troglolysiphantes salax (Kulczynski 1914) | Tb
Coleoptera, Carabidae | Neotrechus suturalis otiosus Obenberger, 1917 | Tb
Coleoptera, Leioidae | Speonesiotes (Speonesiotes) narentinus latitarsis (Apfelbeck, 1919) | Tb
Collombola, Entomobryidae | Verhoeffiella longicornis (Absolon 1900) | Tb
Diplopoda, Polydesmidae | Brachydesmus stygivagus Verhoeff, 1899 | Tb
Isopoda, Trichoniscidae | Cyphonethes herzegowinensis (Verhoeff, 1900) | Tb
Opiliones, Sironidae | Cyphophthalmus sp. | Tb

4.2.45 Jama pod Brk

Tablica 4.2.31. Jama pod Brk.

Viša taksonomska kategorija | Svojta | Ekol.
--- | --- | ---
Araneae, Dysderidae | Stalagia hercegovinensis (Nosek, 1905) | Tb
Coleoptera, Leioidae | Speonesiotes (Speonesiotes) narentinus latitarsis (Apfelbeck, 1919) | Tb
Diplopoda, Polydesmidae | Brachydesmus sp. | Tb
Isopoda, Trichoniscidae | Cyphonethes herzegowinensis (Verhoeff, 1900) | Tb
Opiliones, Phalangodidae | Lola sp. nov. | Tb
Pseudoscorpiones, Neobiididae | Roncus sp. nov. 2 | Tb

4.2.46 Jama u Predolcu

Tablica 4.2.32. Jama u Predolcu.

Viša taksonomska kategorija | Svojta | Ekol.
--- | --- | ---
Amphipoda, Niphargidae | Niphargus kolombatovici S.Karaman 1950 | Sb
<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivalvia, Dreissenidae</td>
<td><em>Congeria kasperi</em> Bole, 1962</td>
<td>Sb</td>
</tr>
<tr>
<td>Decapoda, Atyidae</td>
<td><em>Troglacaris (Troglacaris) anophthalmus periadriatica</em> Jugovic, Jalžić, Prevorčnik &amp; Sket, 2012</td>
<td>Sb</td>
</tr>
<tr>
<td>Isopoda aquatica, Cirolanidae</td>
<td><em>Sphaeromides virei virei</em> Brian 1923</td>
<td>Sb</td>
</tr>
<tr>
<td>Polychaeta, Sabellida</td>
<td><em>Marifugia cavatica</em> Absolon &amp; Hrabe, 1930</td>
<td>Sb</td>
</tr>
</tbody>
</table>

### 4.2.47 Jama u Zabiradu

Tablica 4.2.33. Jama u Zabiradu.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagtax hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td><em>Verhoefiella longicornis</em> (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td><em>Neotrechus suturalis otiósus</em> Obenberger, 1917</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes (Speonesiotes) narentinus latitarsis</em> (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td><em>Brachydesmus sp.</em></td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Cyphonethes herzegowinensis</em> (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus heroldi</em> (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus sp.</em></td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius (Chthonius) absoloni</em> Beier, 1939</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td><em>Roncus anophthalmus</em> (Ellingsen, 1910)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Hirsutella sp. nov.</em></td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Beauveria Vuill. sp1</em></td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Doratomyces sp. nov.1</em></td>
<td>Tb</td>
</tr>
</tbody>
</table>

### 4.2.48 Jama uz stazu na Sv. Nikoli

Tablica 4.2.34. Jama uz stazu na Sv. Nikoli.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungi</td>
<td><em>Speleodiscus sp. nov. (prov. croaticus Matočec &amp; I. Kušan n.p.)</em></td>
<td>Tb</td>
</tr>
</tbody>
</table>

### 4.2.49 Jama za Rasohama

Tablica 4.2.35. Jama za Rasohama.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Bathyscidius tristiculus</em> (Apfelbeck 1905) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes sp.</em></td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius (Chthonius) sp. nov. 4</em></td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Ascomycota Caval.- Sm. sp6</em></td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Pseudogymnoascus Raillo sp1</em></td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Beauveria Vuill. sp1</em></td>
<td>Tb</td>
</tr>
</tbody>
</table>
**4.2.50 Jama Zadubravica**

Tablica 4.2.36. Jama Zadubravica.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungi</td>
<td>Penicillium Link (spec. nov. - sp2)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Cephalotrichum Link sp3</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Onygenales Cif. ex Benny &amp; Kimbr. sp9</td>
<td>Tb?</td>
</tr>
</tbody>
</table>

**4.2.51 Japaga iznad Kopren dola**

Nisu utvrđeni špiljski organizmi.

**4.2.52 Kaverna 167**

Nisu utvrđeni špiljski organizmi.

**4.2.53 Kaverna 180**

Tablica 4.2.37. Kaverna 180.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Leptonetidae</td>
<td>Sulcia orientalis (Kulczynski, 1914)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus suturalis otiosus Obenberger, 1917</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Speonesiotes (Speonesiotes) narentinus (Miller 1861) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Hypogastruridae</td>
<td>Acheroxenylla sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td>Brachydesmus stygivagus Verhoeff, 1899</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td>Brachydesmus stygivagus Verhoeff, 1899</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplura, Campodeidae</td>
<td>Plusiocampa (Stygiocampa) remyi Conde, 1947</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpionicus heroldi (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Aegonethes sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphonethes herzegowinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Opiliones, Sironidae</td>
<td>Cyphophthalmus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Chthonius) trebinjensis Beier, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Roncus anophthalmus (Ellingsen, 1910)</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes</em> (<em>Speonesiotes</em>) <em>narentinus</em> (Miller 1861) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td><em>Brachydesmus stygivagus</em> Verhoeff, 1899</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus verhoeffi</em> (Strouhal, 1938)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus</em> sp.</td>
<td>Tb</td>
</tr>
</tbody>
</table>

**4.2.54 Kaverna 183**

Tablica 4.2.38. Kaverna 183.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagtia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Chordeumatida</td>
<td>Chordeumatida, sp. nov.</td>
<td>Tb</td>
</tr>
</tbody>
</table>

**4.2.55 Kaverna 781**


<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Bellidae</td>
<td><em>Metabelbella gratiosa</em> (Willmann, 1940)</td>
<td>Tb</td>
</tr>
<tr>
<td>Acari, Parantennulidae</td>
<td><em>Diplopodophilus antennophoroides</em> Willmann, 1940</td>
<td>Tb</td>
</tr>
<tr>
<td>Amphipoda, Niphargidae</td>
<td><em>Niphargus</em> sp.</td>
<td>Sb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagtia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td><em>Troglohyphantes</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td><em>Verhoeffiella longicornis</em> (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Sminthuridae</td>
<td><em>Disparrhopalites</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td><em>Neotrechus sataralis otiosus</em> Obenberger, 1917</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes</em> (<em>Speonesiotes</em>) <em>narentinus</em> (Miller 1861) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leioididae</td>
<td><em>Speonesiotes</em> (<em>Kalzeria</em>) sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td><em>Novakia</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td><em>Troglalurops</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Trichopolydesmida</td>
<td><em>Trichopolydesmida</em>, sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Julidae</td>
<td><em>Typhlooidus</em> sp. nov. 1</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td><em>Brachydesmus stygivagus</em> Verhoeff, 1899</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplura, Campodeidae</td>
<td><em>Plusiocampa</em> (<em>Stygocampa</em>) <em>remyi</em> Conde, 1947</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Pristilomatida</td>
<td><em>Vitrea zilchi</em> L. Pinter, 1972</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Trichoniscus</em> sp. nov.1</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus heroldi</em> (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus verhoeffi</em> (Strouhal, 1938)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Aegonethes cervinus</em> (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Opiliones, Sironidae</td>
<td><em>Cyphophthalimus</em> sp. nov.1</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Fungi</td>
<td>Gibellula Cavara sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Mycelia Sterilia</td>
<td>Mycelia sterilia sp7</td>
<td>Tb?</td>
</tr>
<tr>
<td>Oligochaeta, Enchytraeidae</td>
<td>Enchytraeidae, Gen/sp</td>
<td>Sb</td>
</tr>
<tr>
<td>Oligochaeta, Tubificidae</td>
<td>Tubificidae, Gen/sp</td>
<td>Sb</td>
</tr>
<tr>
<td>Polychaeta, Sabellida</td>
<td>Marifugia cavatica Absolon &amp; Hrabe, 1930</td>
<td>Sb</td>
</tr>
</tbody>
</table>

### 4.2.56 Kaverna Duboka Ljuta

Tablica 4.2.40. Kaverna Duboka Ljuta.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipoda, Niphargidae</td>
<td>Niphargus balcanicus Absolon 1927</td>
<td>Sb</td>
</tr>
<tr>
<td>Amphipoda, Niphargidae</td>
<td>Niphargus vjeternicensis S. Karaman 1932</td>
<td>Sb</td>
</tr>
<tr>
<td>Cyclopoida</td>
<td>Cyclopoida, Gen/sp</td>
<td>Sb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus saturalis (Schauffuss 1864) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Lanzaia vjetrenicae kusceri Karaman, 1954</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Lanzaia vjetrenicae vjetrenicae Kuščer, 1933</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Lanzaia vjetrenicae latecostata Schütt, 1968</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Iglica (Rhaphica) bagliviaeformis Schütt, 1970</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Orientalina troglogobia (Bole, 1961)</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Saxurinator brandti Schütt, 1968</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Plagigeyeria robusta asculpta Schütt, 1972</td>
<td>Sb</td>
</tr>
<tr>
<td>Decapoda, Atyidae</td>
<td>Troglocaris (Spelaeocaris) pretneri (Matjašič, 1956)</td>
<td>Sb</td>
</tr>
<tr>
<td>Decapoda, Atyidae</td>
<td>Troglocaris (Troglocaridella) hercegovinensis (Babić, 1922)</td>
<td>Sb</td>
</tr>
<tr>
<td>Decapoda, Atyidae</td>
<td>Troglocaris (Spelaeocaris) presence Sket &amp; Zakšek, 2009 /</td>
<td>Sb</td>
</tr>
<tr>
<td>Decapoda, Atyidae</td>
<td>Troglocaris (Troglocaridella) anophthalmus periadiriatica Jugovic, Jalžić, Prevorčnik &amp; Sket, 2012</td>
<td>Sb</td>
</tr>
<tr>
<td>Isopoda aquatica, Sphaeromatidae</td>
<td>Monolistra hercegoviniensis Absolon 1916</td>
<td>Sb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphonethes hercegovinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Njegosiella sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Polychaeta, Sabellida</td>
<td>Marifugia cavatica Absolon &amp; Hrabe, 1930</td>
<td>Sb</td>
</tr>
</tbody>
</table>

### 4.2.57 Kornjatuša jama

Tablica 4.2.41. Kornjatuša jama.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipoda, Niphargidae</td>
<td>Niphargus boskovici S. Karaman, 1952</td>
<td>Sb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagtit hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus dalmatinus (L. Miller, 1861)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Speonesiotes (Speonesiotes) narentinus (Miller 1861) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------------------------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Anthroherpon apfelbecki sculptifrons Winkler, 1925</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td>Brachydesmus stygivagus Verhoeff, 1899</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplura, Campodeidae</td>
<td>Plusiocampa (Stygiocampa) remyi Conde, 1947</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Carychiidae</td>
<td>Zospeum amoenum (Frauenfeld, 1856)</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Milacidae</td>
<td>Tandonia cavicola (Simroth 1916)?</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniscus heroldi (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniscus sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniscus sp.</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.58 Krivača špilja

Tablica 4.2.42. Krivača špilja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagtia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Pholeuonella sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td>Brachydesmus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td>Brachydesmus stygivagus Verhoeff, 1899</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Glomeridellidae</td>
<td>Typhloglomeris coeca Verhoeff, 1898</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphonethes hercegovinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Neobisium (Blothrus) occultum Beier, 1939</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Roncus anophthalmus (Ellingsen, 1910)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Hirsutella sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Cephalotrichum Link sp2</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Penicillium Link sp3</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Ascomycota Caval.- Sm. sp5</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Beauveria Vuill. sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Penicillium Link (spec. nov. -. sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Cephalotrichum sp. nov.(sp1)</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.59 Kukova peć

Tablica 4.2.43. Kukova peć.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagtia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Agelenidae</td>
<td>Histopona dubia (Absolon &amp; Kratochvil, 1932)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagtia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td>Verhoeffiella longicornis (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus saturalis otosus Obenberger, 1917</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Speonesiotes (Speonesiotes) narentinus latitarsis (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Pholeonella erberii</em> (Schaufuss 1862) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td><em>Novakia</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td><em>Brachydesmus stygivagus</em> Verhoeff, 1899</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td><em>Pholeteras euthrix</em> Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus heroldi</em> (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Cyphonethes herzegoewinensis</em> (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Njegosiella</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Opiliones, Travuniidae</td>
<td><em>Travunia anophthalma</em> Absolon &amp; Kratochvil, 1927</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius</em> (<em>Chthonius</em>) <em>absoloni</em> Beier, 1939</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius</em> (<em>Chthonius</em>) <em>trebinjensis</em> Beier, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthoniidae</em>, Nov. Gen. nov. sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td><em>Roncus anophthalmus</em> (Ellingsen, 1910)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Ascomycota</em> Caval.- Sm. sp2</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Trichurus</em> sp. nov. (sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Nomuraea</em> Maubl. Sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Penicillium</em> Link (spec. nov. - sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Trichurus</em> Clem. sp2</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Pidoplitchkoviella</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Ascomycota</em> Caval.- Sm. sp4</td>
<td>Tb?</td>
</tr>
</tbody>
</table>

**4.2.60 Kuna špilja**

Tablica 4.2.44. Kuna špilja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colembola, Onychiuridae</td>
<td><em>Onychiuroides</em> n. sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes</em> (<em>Speonesiotes</em>) <em>narentinus latitarsis</em> (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Glicerellidae</td>
<td><em>Typhloglomeris coeca</em> Verhoeff, 1898</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td><em>Brachydesmus stygivagus</em> Verhoeff, 1899</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td><em>Pholeteras euthrix</em> Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Strobilipsidae</td>
<td><em>Virpazaria</em> (<em>Virpazaria</em>) <em>pageti kleteckii</em> Štamol &amp; Subai, 2012</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius</em> (<em>Chthonius</em>) <em>magnificus</em> Beier, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td><em>Roncus anophthalmus</em> (Ellingsen, 1910)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Trichocomaceae</em> E. Fisch. sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Nomuraea</em> Maubl. Sp3</td>
<td>Tb?</td>
</tr>
</tbody>
</table>
4.2.61 Lokva Vidohovo

Nisu utvrđeni špiljski organizmi.

4.2.62 Mali izvor u selu Glušci

Tablica 4.2.45. Mali izvor u selu Glušci.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Lanzaia vjetrenicae vjetrenicae Kuščer, 1933</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Plagigeyeria robusta asculpta Schütt, 1972</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Hauffenia edlaueri (Schütt, 1961)</td>
<td>Sb</td>
</tr>
<tr>
<td>Polychaeta, Sabellida</td>
<td>Marifugia cavatica Absolon &amp; Hrabe, 1930</td>
<td>Sb</td>
</tr>
</tbody>
</table>

4.2.63 Močiljska špilja*

Tablica 4.2.46. Močiljska špilja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Labidostommatidae</td>
<td>Nicoletiella absoloni Willmann, 1940</td>
<td>Tb</td>
</tr>
<tr>
<td>Acari, Trombellidae</td>
<td>Spelaethermobium caecum Willmann, 1940</td>
<td>Tb</td>
</tr>
<tr>
<td>Amphipoda, Bogidiellida</td>
<td>Bogidiella sp.</td>
<td>Sb</td>
</tr>
<tr>
<td>Araneae, Agelenidae</td>
<td>Histopona dubia (Absolon &amp; Kratochvíl, 1932)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagtitia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Leptonetidae</td>
<td>Sulcia occulta Kratochvíl, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td>Verhoeffiella media (Loksa &amp; Bogojević, 1967)*</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td>Verhoeffiella longicornis (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td>Pseudosinella sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Onychiuridae</td>
<td>Onychiuroides sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus satuinalis otiosus Obenberger, 1917</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leioididae</td>
<td>Speonesiotes (Speonesiotes) narentinus latittersis (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leioididae</td>
<td>Anthroherpon apfelbecki apfelbecki (Müller, 1910)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td>Tychobythinus neumanni (J. Müller, 1909)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td>Novakia sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplura, Campodeidae</td>
<td>Plusiocampa (Stygiocampa) remyi Conde, 1947</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplura, Campodeidae</td>
<td>Plusiocampa (Stygiocampa) sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td>Pholeoteras euthrix Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Pristilomatidae</td>
<td>Vitrea zilchi L. Pinter, 1972</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda aquatica, Asellida</td>
<td>Proasellus sp.</td>
<td>Sb</td>
</tr>
<tr>
<td>Isopoda aquatica, Asellida</td>
<td>Proasellus anophthalmus dalmatinus (S. Karaman, 1955)</td>
<td>Sb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphonethes hercegovinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphoniscellus hercegovinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniscus heroldi (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
</tbody>
</table>
4.2.64 Morska špilja u Rafovoj uvali 1

Nisu utvrđeni špiljski organizmi.

4.2.65 Pasja jama

Tablica 4.2.47. Pasja jama.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Leptonetidae</td>
<td><em>Sulcia orientalis</em> (Kulczynski, 1914)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Leptonetidae</td>
<td><em>Barusia</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidiae</td>
<td><em>Brachydesmus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius (Eppiphiochthonius) insularis</em> Beier, 1938</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.66 Pasja špilja

Nisu utvrđeni špiljski organizmi.

4.2.67 Pećina na Velikom Humu

Nisu utvrđeni špiljski organizmi.

4.2.68 Špilja u Gaju

Tablica 4.2.48. Špilja u Gaju.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagdia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Agelenidae</td>
<td><em>Histopona dubia</em> (Absolon &amp; Kratochvil, 1932)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Leptonetidae</td>
<td><em>Sulcia occulta</em> Kratochvil, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes (Speonesiotes) narentinus latitarsis</em> (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidiae</td>
<td><em>Brachydesmus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td><em>Pholeteras euthrix</em> Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------------------------------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Trichoniscus</em> sp. nov.1</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius (Chthonius) trebinjensis</em> Beier, 1938</td>
<td>Tb</td>
</tr>
</tbody>
</table>

**4.2.69 Pliješina jama**

Tablica 4.2.49. Pliješina jama.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Rhagidiidae</td>
<td><em>Tragaardhia dalmatina</em> (Willmann 1939)</td>
<td>Tb</td>
</tr>
<tr>
<td>Amphipoda, Gammaridae</td>
<td><em>Accubogammarus algor jalzici</em> G. Karaman 1988</td>
<td>Sb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td><em>Verhoeffiella longicornis</em> (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopora, Polydesmidae</td>
<td><em>Bruchidesmus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Hirudinea, Erpobellidae</td>
<td><em>Dina absoloni</em> Johansson 1913</td>
<td>Sb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Njegosiella</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td><em>Neobisium (Blothrus) umbratile</em> Beier, 1939</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td><em>Neobisium (Blothrus) vachoni</em> Beier, 1939</td>
<td>Tb</td>
</tr>
</tbody>
</table>

**4.2.70 Ponor Ljute**

Nisu utvrđeni špiljski organizmi.

**4.2.71 Predpeć**

Tablica 4.2.50. Predpeć.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Labidostommatidae</td>
<td><em>Nicoletiella absoloni</em> Willmann, 1940</td>
<td>Tb</td>
</tr>
<tr>
<td>Acari, Labidostommatidae</td>
<td><em>Nicoletiella absoloni acuticornis</em> Willmann, 1940</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td><em>Roncus</em> sp. nov.3</td>
<td>Tb</td>
</tr>
</tbody>
</table>

**4.2.72 Rafova špilja**

Nisu utvrđeni špiljski organizmi.

**4.2.73 Romića vrilo**

Tablica 4.2.51. Romića vrilo.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Hauffenia edlaueri</em> (Schütt, 1961)</td>
<td>Sb</td>
</tr>
</tbody>
</table>
4.2.74 Šklenica špilja

Tablica 4.2.52. Šklenica špilja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda, Aciculidae</td>
<td><em>Pholeoteras euthrix</em> Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Milacidae</td>
<td><em>Tandonia cavicola</em> (Simroth 1916)</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.75 Sumporača špilja velika

Tablica 4.2.53. Sumporača špilja velika.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudoscorpiones, Chthionidae</td>
<td><em>Chthonius (Chthonius) densedentatus</em> Beier, 1938</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.76 Šipun špilja

Tablica 4.2.54. Šipun špilja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Belbidae</td>
<td><em>Metabelbella gratiosa</em> (Willmann, 1940)*</td>
<td>Tb</td>
</tr>
<tr>
<td>Acari, Trombellidae</td>
<td><em>Spelaeothrombium caecum</em> Willmann, 1940*</td>
<td>Tb</td>
</tr>
<tr>
<td>Acari, Trombellidae</td>
<td><em>Nothrotrombidium bulbifera</em> (Willmann, 1940)*</td>
<td>Tb</td>
</tr>
<tr>
<td>Amphipoda, Niphargidae</td>
<td><em>Niphargus salonitanus</em> S.Karaman 1950</td>
<td>Sb</td>
</tr>
<tr>
<td>Amphipoda, Hadziidae</td>
<td><em>Hadzia fragilis</em> Karaman, S., 1932</td>
<td>Sb</td>
</tr>
<tr>
<td>Amphipoda, Salentinellidae</td>
<td><em>Salentinella angelieri</em> Ruffo &amp; Delamare Deboutville, 1952</td>
<td>Sb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Folkia inermis</em> (Absolon &amp; Kratochvil, 1932)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Agelelinidae</td>
<td><em>Histopona dubia</em> (Absolon &amp; Kratochvil, 1932)*</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td><em>Pallidiphantes brignolii</em> (Kratochvil, 1978)*</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td><em>Pseudosinella</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Oncopoduridae</td>
<td><em>Oncopoda jugoslavica</em> Absolon &amp; Kseneman, 1932</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Onychiuridae</td>
<td><em>Deuteraphorura</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes (Speonesiotes) narentinus latitarsis</em> (Apfelbeck, 1919)*</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes (Speonesiotes) sp.</em></td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Laneyriella</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Pholeumella erberii epidaurica</em> Z. Karaman, 1953*</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td><em>Tychobbythinus neumannii</em> (J. Müller, 1909)*</td>
<td>Tb</td>
</tr>
<tr>
<td>Cyclopoda, Cyclopidae</td>
<td><em>Diacyclops antrincola</em> Kiefer, 1967</td>
<td>Sb</td>
</tr>
<tr>
<td>Cyclopoda, Cyclopidae</td>
<td><em>Metacyclops trisetosus</em> Herbst, 1957*</td>
<td>Sb</td>
</tr>
<tr>
<td>Cyclopoda, Cyclopidae</td>
<td><em>Thermocyclops dalmatica</em> Petkovski, 1956*</td>
<td>Sb</td>
</tr>
<tr>
<td>Diplopoda, Polyxenidae</td>
<td><em>Polyxenus</em> sp. nov.?</td>
<td>Tb?</td>
</tr>
<tr>
<td>Diplopoda, Glomeridae</td>
<td><em>Typhloglomeris coeca</em> Attems, 1951</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------------------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Diplura, Campodeidae</td>
<td>Plusiocampa (Stygiocampa) remyi Conde, 1947</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Iglica (Iglica) absoloni (A. J. Wagner, 1914)</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td>Saxurinator sketi (Bole, 1960) *</td>
<td>Sb</td>
</tr>
<tr>
<td>Isopoda aquatica, Sphaeromatidae</td>
<td>Merozoon vestigatum Sket, 2012*</td>
<td>Sb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Aegonethes sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Aegonethes cervinus (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphoniscellus herzegowinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Polychaeta, Sabellida</td>
<td>Marijuga cavatica Absolon &amp; Hrabe, 1930</td>
<td>Sb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Chthonius) magnificus Beier, 1938*</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Roncus sp. nov.2</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Neobium (Blothrus) lethaeum superbum Beier, 1938*</td>
<td>Tb</td>
</tr>
<tr>
<td>Thermosbaenacea, Monodeliidae</td>
<td>Tethysbaena halophila (S. Karaman, 1953)*</td>
<td>Sb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Ascomycota Caval.- Sm. sp7</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Ascomycota Caval.- Sm. sp7</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Trichocomaceae E. Fisch. sp2</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Onygenales Cif. ex Benny &amp; Kimbr. sp10</td>
<td>Tb?</td>
</tr>
</tbody>
</table>

**4.2.77 Šolkina jama**

Tablica 4.2.55. Šolkina jama*.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Labidostommatidae</td>
<td>Nicoletiella absoloni Willmann, 1940</td>
<td>Tb</td>
</tr>
<tr>
<td>Acari, Labidostommatidae</td>
<td>Nicoletiella sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagia herzegowinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Leptonetidae</td>
<td>Sulcia orientalis (Kulczynski, 1914)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Leptonetidae</td>
<td>Sulcia sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td>Troglohyphantes sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td>Palliduphantes sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leioididae</td>
<td>Speonesiotes (Speonesiotes) narentinus (Miller 1861) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Scytomenidae</td>
<td>Tetramellus sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Carychidae</td>
<td>Zospeum amoenum (Frauenfeld, 1856)</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Vertiginidae</td>
<td>Spelaeoconcha paganettii polymorpha A.J. Wagner, 1914</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Pristilomatidae</td>
<td>Vitrea zilchi L. Pinter, 1972</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniciscus sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniciscus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Opiliones, Travuniidae</td>
<td>Dinaria vjetrenicae Hadži, 1932</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Chthonius) absoloni Beier, 1939</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthoniidae, Nov. Gen. nov. sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td><em>Roncus narentae</em> Dimitrijević &amp; Rada, 2008*</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Penicillium</em> Link (spec. nov. - sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Cephalotrichium</em> sp. nov.(sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Doratomyces</em> sp. nov.1</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Ophiocordycipitaceae</em> G.H. Sung, J.M. Sung, Hywell-Jones &amp; Spatafora sp.1</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Talaromyces</em> C.R. Benj. sp1</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Calyptellopsis</em> Svrček sp2</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Trichocomaceae</em> E. Fisch. sp2</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Calyptellopsis</em> Svrček sp2</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Doratomyces</em> sp. nov.2</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Polycephalomyces</em> Kobayasi sp1</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Kickxellaceae</em> Linder sp1</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Spelaediscus</em> sp. nov. (prov. <em>croaticus</em> Matočec &amp; I. Kušan n.p.)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Ascomycota</em> Caval.- Sm. sp8</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Penicillium</em> Link (spec. nov. - sp2)</td>
<td>Tb</td>
</tr>
</tbody>
</table>

### 4.2.78 Špijaturica

Tablica 4.2.56. Špijaturica.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagstia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes (Speonesiotes) narentinus latitarsis</em> (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Aegonethes</em> sp.</td>
<td>Tb</td>
</tr>
</tbody>
</table>

### 4.2.79 Špilja 1 u uvali Hodovlja

Tablica 4.2.57. Špilja 1 u uvali Hodovlja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes (Speonesiotes) narentinus latitarsis</em> (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Aegonethes</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonias (Chthonius) absoloni</em> Beier, 1939</td>
<td>Tb</td>
</tr>
</tbody>
</table>

### 4.2.80 Špilja ispod krst

Tablica 4.2.58. Špilja ispod krst.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagstia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes (Speonesiotes) narentinus</em> (Miller 1861) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Bathyscidius tristiculus</em> (Apfelbeck 1905) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius (Chthonius) trebinjensis</em> Beier, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Penicillium</em> Link (spec. nov. - sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Onygenales</em> Cif. ex Benny &amp; Kimbr. sp8</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Cephalotrichum</em> sp. nov.(sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Hypocreaceae</em> De. Not. sp1</td>
<td>Tb?</td>
</tr>
</tbody>
</table>

### 4.2.81 Špilja iznad crkvice Gospe od Luga

Tablica 4.2.59. Špilja iznad crkvice Gospe od Luga.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagzia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td><em>Novakia</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td><em>Brachydesmus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td><em>Pteleoteras euthrix</em> Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Aegonethes cervinus</em> (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Aegonethes</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Hirsutella</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Pseudogymnoascus</em> Raillo sp1</td>
<td>Tb?</td>
</tr>
</tbody>
</table>

### 4.2.82 Špilja iznad Kopren dola

Tablica 4.2.60. Špilja iznad Kopren dola.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Labidostommatidae</td>
<td><em>Labidostomma longipes</em> Willmann, 1940</td>
<td>Tb</td>
</tr>
<tr>
<td>Acari, Parasitidae</td>
<td><em>Holoparasitus absoloni</em> (Willmann 1940)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagzia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td><em>Troglohyphantes salax</em> (Kulczynski 1914)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td><em>Verhoeffiella longicornis</em> (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td><em>Neotrechus dalmatinus</em> (L. Miller, 1861)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leioididae</td>
<td><em>Speonesiotes (Speonesiotes) narentinus</em> (Miller 1861) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td><em>Troglamaurops ganglbaueri</em> (Winkler, 1925)</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplura, Campodeidae</td>
<td><em>Plusiocampa</em> (Stygiocampa) sp. nov.</td>
<td>Sb</td>
</tr>
<tr>
<td>Gastropoda, Vertiginidae</td>
<td><em>Spelaeoconcha paganettii polymorpha</em> A.J. Wagner, 1914</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Pristilomatidae</td>
<td><em>Vitrea zilchi</em> L. Pinter, 1972</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus heroldi</em> (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Cyphonethes hercegovinensis</em> (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Troglocyphoniscus absoloni</em> Strouhal 1939</td>
<td>Tb</td>
</tr>
<tr>
<td>Opiliones, Travuniidae</td>
<td><em>Dinaria vjetrenicae</em> Hadži, 1932</td>
<td>Tb</td>
</tr>
</tbody>
</table>
### 4.2.83 Špilja iznad špilje iznad crkvice Gospe od Luga

Tablica 4.2.61. Špilja iznad špilje iznad crkvice Gospe od Luga.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Cthlonius (Globbochthonius) caligatus</em> Beier, 1939</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td><em>Roncus</em> sp. nov.3</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Talaromyces</em> C.R. Benj. sp1</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Trichurus</em> Clem. sp2</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Onygenales</em> Cif. ex Benny &amp; Kimbr. Sp11</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Cephalotrichum</em> Link sp4</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Hypocreaceae</em> De. Not. sp1</td>
<td>Tb?</td>
</tr>
</tbody>
</table>

### 4.2.84 Špilja Jezero

Tablica 4.2.62. Špilja Jezero*.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagitia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td><em>Neotrechus saturalis</em> (Schaufuss 1864) sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td><em>Brachydesmus stygivagus</em> Verhoeff, 1899</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td><em>Pholeoteras euthrix</em> Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Milacidae</td>
<td><em>Tandonia cavicola</em> (Simroth 1916)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Aegonethes cervinus</em> (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Polychaeta, Sabellida</td>
<td><em>Marifugia cavatica</em> Absolon &amp; Hrabe, 1930</td>
<td>Sb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Spelaeodiscus</em> sp. nov. (prov. croaticus Matočec &amp; I. Kušan n.p.)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Calyptellopsis</em> Svrček sp1</td>
<td>Tb</td>
</tr>
</tbody>
</table>

---

75
<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Pholeuonella sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td>Seracamaurops cadmci Pavičević &amp; Ozimec, 2013*</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Anthogoninae</td>
<td>Macrochaetosoma troglomontanum Absolon &amp; Lang, 1933</td>
<td>Tb</td>
</tr>
<tr>
<td>Diploura, Campodeidae</td>
<td>Plusiocampa (Stygiocampa) remyi Conde, 1947</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Carychiidae</td>
<td>Zospeum amoenum (Frauenfeld, 1856)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Trichoniscus sp. nov.1</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphonethes herzegovinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Eppiphiochthonius) sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Globochthonius) sp. nov. 2</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Neobisium (Blothrus) heros Beier, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Neobisium (Blothrus) hadzii Beier, 1938*</td>
<td>Tb</td>
</tr>
<tr>
<td>Tricladida, Dugesiidae</td>
<td>Dugesia absoloni (Komarek 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Onygenales Cif. ex Benny &amp; Kimbr. sp7</td>
<td>Tb?</td>
</tr>
<tr>
<td>Mycelia Sterilia</td>
<td>Mycelia sterilis sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Beauveria Vuill. sp4</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Gymnoascus sp3 (chlamydosporus Matočec &amp; I. Kušan n. prov.)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Volutella Fr. sp1</td>
<td>Tb?</td>
</tr>
</tbody>
</table>

**4.2.85 Špilja iznad Omble**

Tablica 4.2.63. Špilja iznad Omble.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagtia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td>Pholeoteras euthrix Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Pristilomatidae</td>
<td>Vitrea zilchi L. Pinter, 1972</td>
<td>Tb</td>
</tr>
</tbody>
</table>

**4.2.86 Špilja kod Majkova u flišu**

Nisu utvrđeni špiljski organizmi.

**4.2.87 Špilja na vrh Toraca**

Tablica 4.2.64. Špilja na vrh Toraca

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagtia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Agelenidae</td>
<td>Histopona dubia (Absolon &amp; Kratochvil, 1932)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Speonesiotes (Speonesiotes) narentinus latitarsis (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td>Pholeoteras euthrix Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Vertiginidae</td>
<td>Spelaecoconcha paganettii polymorpha A.J. Wagner, 1914</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphonethes herzegovinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Chthonius) trebinjensis Beier, 1938</td>
<td>Tb</td>
</tr>
</tbody>
</table>

**4.2.88 Špilja od Punta**

Tablica 4.2.65. Špilja od Punta.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagtia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td>Walckenaeria sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td>Verhoeffiella longicornis (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Onychiuridae</td>
<td>Deuteraphorura sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Speonesiotes (Speonesiotes) narentinus latitarsis (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td>Novakia sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Glomeridellidae</td>
<td>Typhloglomeris coeca Verhoeff, 1898</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td>Pholeoteras euthrix Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Aegonethes cervinus (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Aegonethes sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Trichoniscus sp. nov.1</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphoniscellus herzegowinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Chthonius) magnificus Beier, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Roncus rugusae Ćurčić &amp; Rađa, 2012</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Calyptrellopsis Svrček sp1</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Penicillium Link (spec. nov. - sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Cephalotrichum sp. nov.(sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Onygenales Cif. ex Benny &amp; Kimbr. sp5</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Onygenales Cif. ex Benny &amp; Kimbr. sp6</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Penicillium Link (spec. nov. - sp2)</td>
<td>Tb</td>
</tr>
</tbody>
</table>

**4.2.89 Vrbočulja špilja**

Tablica 4.2.66. Vrbočulja špilja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagtia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Speonesiotes (Speonesiotes) narentinus (Miller 1861) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Paradoxosomatidae</td>
<td>Paradoxosomatidae, Gen/sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Chthonius) exarmatus Beier 1939</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Chthonius) absoloni Beier, 1939</td>
<td>Tb</td>
</tr>
</tbody>
</table>
### 4.2.90 Špilja za Gromačkom vlakom

Tablica 4.2.67. Špilja za Gromačkom vlakom*.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Labidostommatidae</td>
<td>Nicoletiella absoloni Willmann, 1940</td>
<td>Tb</td>
</tr>
<tr>
<td>Amphipoda, Gammaridae</td>
<td>Typhlogammarus mrazeki Schäferna, 1906</td>
<td>Sb</td>
</tr>
<tr>
<td>Amphipoda, Gammaridae</td>
<td>Accubogammarus algor jalzici G. Karaman 1988*</td>
<td>Sb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagzia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Ageelenidae</td>
<td>Histopona dubia (Absolon &amp; Kratochvil, 1932)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td>Troglophyphantes sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td>Verhoeffiella longicornis (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Onychiuridae</td>
<td>Onychiurides sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Neelidae</td>
<td>Neelus sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Oncopoduridae</td>
<td>Oncopodura jugoslavica Absolon &amp; Kseneman 1932</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus sutoralis otiosus Obenberger, 1917</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Speonesiotes (Speonesiotes) narentinus latitarsis (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Anthroherpon apfelbecki apfelbecki (Müller, 1910)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Hadesia vasiceki J. Müller 1911</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td>Novakia sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Glomeridellidae</td>
<td>Typhloglomeris coeca Verhoeff, 1898</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td>Brachydesmus stygiagus Verhoeff, 1899</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td>Brachydesmus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Julidae</td>
<td>Typhloïdus edentulus Attems 1951</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polyzonida</td>
<td>Polyzioida sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Paradoxosomatidae</td>
<td>Paradoxosomatidae sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Carychidae</td>
<td>Zospeum amoenum (Frauenfeld, 1856)</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Zonitidae</td>
<td>Aeopis spelaeus A. J. Wagner, 1914</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td>Pholeoteras euthrix Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Hirudinea, Erpobdellidae</td>
<td>Dina absoloni Johansson 1913</td>
<td>Sb</td>
</tr>
<tr>
<td>Isopoda aquatic, Asellidae</td>
<td>Proasellus anopthalmus (Karaman 1934)</td>
<td>Sb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphonethes hercegovinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniscus heroldi (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Trichonisus sp.nov.2</td>
<td>Tb</td>
</tr>
<tr>
<td>Opiliones, Travuniidae</td>
<td>Travunia anopthalma Absolon &amp; Kratochvil, 1927</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Chthonius) trebinjensis Beier, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Chthonius) exarmatus Beier 1939</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Neobisium (Blothrus) lethaem Beier 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Neobisium (Blothrus) sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Tricladida, Dugesiidae</td>
<td>Dugesia absoloni (Komarek 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Macor</em> P. Micheli ex L. sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Hirsutella</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Pseudogymnoascus</em> Rallio sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Pseudogymnoascus</em> Rallio sp2</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Doratomyces</em> sp. nov.1</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Trichurus</em> sp. nov. (sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Beauveria</em> Vuill. Sp3</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Penicillium</em> Link (spec. nov. - sp2)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Trichurus</em> Clem. sp2</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Hypocreaceae</em> De. Not. sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Cephalotrichum</em> sp. nov.(sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Penicillium</em> Link (spec. nov. - sp1)</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.91 Tihinja špilja

Tablica 4.2.68. Tihinja špilja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipoda, Niphargidae</td>
<td><em>Niphargus hvarenis</em> S.Karaman 1952</td>
<td>Sb</td>
</tr>
<tr>
<td>Amphipoda, Niphargidae</td>
<td><em>Niphargus kolombatovici</em> S.Karaman 1950</td>
<td>Sb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes (Speonesiotes) narentinus</em> (Miller 1861) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Pholeuonella</em> n. sp.</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.92 Topli izvor u Zatonu malom

Tablica 4.2.69. Topli izvor u Zatonu malom.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda, Hydrobiidae</td>
<td><em>Belgrandia torifera</em> Schütt, 1961</td>
<td>Sb</td>
</tr>
</tbody>
</table>

4.2.93 Traverza kod Miljković staja

Tablica 4.2.70. Traverza kod Miljković staja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Labidostommatidae</td>
<td><em>Nicoletiella absoloni</em> Willmann, 1940</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagitia hercegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Leptonetidae</td>
<td><em>Barusia</em> sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Colembola, Entomobryidae</td>
<td><em>Verhoeffiella longicornis</em> (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td><em>Neotrechus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td><em>Speonesiotes (Speonesiotes) narentinus latitarsis</em> (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidiae</td>
<td><em>Brachydesmus stygivagus</em> Verhoeff, 1899</td>
<td>Tb</td>
</tr>
</tbody>
</table>
Viša taksonomska kategorija | Svojta | Ekol.
--- | --- | ---
Gastropoda, Vertiginidae | *Spelaeoconcha paganettii polymorpha* A.J. Wagner, 1914 | Tb
Isopoda, Trichoniscidae | *Alpioniscus* sp. | Tb
Opiliones, Sironidae | *Cyphophthalmus* sp. nov.2 | Tb
Pseudoscorpiones, Chthoniidae | *Chthonius (Chthonius) absoloni* Beier, 1939 | Tb
Pseudoscorpiones, Chthoniidae | *Chthonius (Eppiphiochthonius) insularis* Beier, 1938 | Tb
Pseudoscorpiones, Chthoniidae | *Chthonius (Globbochthonius) caligatus* Beier, 1939 | Tb
Pseudoscorpiones, Neobisiidae | *Roncus anophthalmus* (Ellingsen, 1910) | Tb
Fungi | *Trichurus* Clem. sp4 | Tb?
Fungi | *Spelaeadiscus* sp. nov. (prov. *croaticus* Matočec & I. Kušan n.p.) | Tb

4.2.94 Tunel iznad Šumeta 1
Nisu utvrđeni špiljski organizmi.

4.2.95 Tunel iznad Šumeta 2
Nisu utvrđeni špiljski organizmi.

4.2.96 Tunel iznad Šumeta 3
Nisu utvrđeni špiljski organizmi.

4.2.97 Tunel iznad Šumeta 4
Nisu utvrđeni špiljski organizmi.

4.2.98 Tunel Konavosko polje-more
Nisu utvrđeni špiljski organizmi.

4.2.99 Tunel Mihanići 1
Tablica 4.2.71. Tunel Mihanići 1.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipoda, Niphargidae</td>
<td><em>Niphargus</em> sp. 1</td>
<td>Sb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td><em>Verhoeffiella longicornis</em> (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Trichoniscus</em> sp. nov.1</td>
<td>Tb</td>
</tr>
<tr>
<td>Mycelia Sterilia</td>
<td><em>Mycelia sterilia</em> sp12</td>
<td>Tb?</td>
</tr>
</tbody>
</table>

4.2.100 Tunel Mihanići 2
Nisu utvrđeni špiljski organizmi.
4.2.101 Tunel Mihanići 3
Nisu utvrđeni špiljski organizmi.

4.2.102 Tunel na Srđu
Nisu utvrđeni špiljski organizmi.

4.2.103 Velika jama poviše Tornja
Tablica 4.2.72. Velika jama poviše Tornja.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acari, Labidostomatidae</td>
<td>Nicoletiella absoloni Willmann, 1940</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagitia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td>Troglohyphantes salax (Kulczynski 1914)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td>Verhoeffiella longicornis (Absolon 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Oncopoduridae</td>
<td>Oncopodura jugoslavica Absolon &amp; Kseneman 1932</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus dalmatinus (L. Miller, 1861)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiidiidae</td>
<td>Speonesiotes (Speonesiotes) narentinus latitarsis (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td>Brachydesmus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Vertiginidae</td>
<td>Spelaeoconcha paganetii polymorpha A.J. Wagner, 1914</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniscus heroldi (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniscus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Roncus narentae Dimitrijević &amp; Rađa, 2008</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Penicillium Link (spec. nov. - sp1)</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.104 Velika peć 2
Tablica 4.2.73. Velika peć 2.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Pholcidae</td>
<td>Stygopholcus skotophilus montenegroinrus Kratochvil 1940</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.105 Vija peć
Tablica 4.2.74. Vija peć.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Linyphiidae</td>
<td>Troglohyphantes sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagitia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Linyphiidae</td>
<td>Troglohyphantes sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td>Neotrechus suturalis otiosus Obenberger, 1917</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiidiidae</td>
<td>Bathyscidius tristiculus (Apfelbeck 1905) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Viša taksonomska kategorija</td>
<td>Svojta</td>
<td>Ekol.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td>Brachydesmus stygivagus Verhoeff, 1899</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Glomerellidae</td>
<td>Typhloglomeris coeca Verhoeff, 1898</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td>Pholeoteras euthrix Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Milacidae</td>
<td>Tandonia cavicola (Simroth 1916)?</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Aegonethes cervinus (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Aegonethes sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniscus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Trichoniscus sp. nov.1</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Nannizziopsis sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Calypellopsis Svrček sp1</td>
<td>Tb</td>
</tr>
<tr>
<td>Mycelia Sterilia</td>
<td>Mycelia sterilia sp9</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Trichurus Clem. sp3</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Pidoplitchkoviella sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Gibellula Cavara sp2</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Ascomycota Cav.- Sm. sp9</td>
<td>Tb?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagitia hercegovensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Pselaphinae</td>
<td>Tychobythinus neumanni (J. Müller, 1909)</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td>Brachydesmus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td>Pholeoteras euthrix Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Vertiginidae</td>
<td>Spelaeoconcha paganettii polymorpha A.J. Wagner, 1914</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniscus heroldi (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphoniscellus hercegovinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Ascodesmidaceae J. Schrot. sp1</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Penicillium Link (spec. nov. - sp1)</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.106 Vilenska peć
Tablica 4.2.75. Vilenska peć.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araneae, Dysderidae</td>
<td>Stalagitia hercegovensis (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leiodidae</td>
<td>Speonesiotes (Speonesiotes) narentinus latitarsi (Apfelbeck, 1919)</td>
<td>Tb</td>
</tr>
</tbody>
</table>

4.2.107 Sustav Vilina špilja – izvor Omble
Predstavljena je u Tablici 4.4.1. (str. 106).

4.2.108 Vilinska špilja
Tablica 4.2.76. Vilinska špilja*.
<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diplopoda, Glomeridellidae</td>
<td><em>Typhloglomeris coeca</em> Verhoeff, 1898</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polyzonida</td>
<td>Polyzoniiida sp. nov.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplura, Campodeidae</td>
<td><em>Plusiocampa (Stygiockampa) remyi</em> Conde, 1947</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Strobilopsidae</td>
<td><em>Virpazaria (Virpazaria) pageti kletecki</em> Štamel &amp; Subai, 2012*</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Aciculidae</td>
<td><em>Pholeoteras eurhinx</em> Sturany, 1904</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Milacidae</td>
<td><em>Tandonia cavica</em> (Simroth 1916)?</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>ÆgIonethes</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Cyphoniscellus herzegovinensis</em> (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Opiliones, Sironidae</td>
<td><em>Cyphophthalmus silhavy</em> (Kratochvil, 1938)*</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius (Chthonius) magnificus</em> Beier, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Calyptelopsis Svrček sp1</em></td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Doratomyces sp. nov.1</em></td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Trichocomaceae E. Fisch. sp1</em></td>
<td>Tb</td>
</tr>
</tbody>
</table>

### 4.2.109 Vir kod kapelice Sv. Mihovila

Nisu utvrđeni špiljski organizmi.

### 4.2.110 Vištica jama

Tablica 4.2.77. Vištica jama.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipoda, Niphargidae</td>
<td><em>Niphargus boskovici</em> S. Karaman, 1952</td>
<td>Sb</td>
</tr>
<tr>
<td>Araneae, Dysderidae</td>
<td><em>Stalagia herzegovinensis</em> (Nosek, 1905)</td>
<td>Tb</td>
</tr>
<tr>
<td>Araneae, Leptonetidae</td>
<td><em>Sulcia orientalis</em> (Kulczynski, 1914)</td>
<td>Tb</td>
</tr>
<tr>
<td>Collembola, Entomobryidae</td>
<td><em>Verhoeffia media</em> (Loksa &amp; Bogojević, 1967)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Carabidae</td>
<td><em>Neotrechus dalmatinus</em> (L. Miller, 1861)</td>
<td>Tb</td>
</tr>
<tr>
<td>Coleoptera, Leioididae</td>
<td><em>Speonesiotes (Speonesiotes) narentinus</em> (Miller 1861) ssp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Polydesmidae</td>
<td><em>Brachydesmus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Diplopoda, Julidae</td>
<td><em>Typhloïdus</em> sp. nov. 2</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Pristilomatidae</td>
<td><em>Vitreæ zilchii</em> L. Pinter, 1972</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus heroldi</em> (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Alpioniscus</em> sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td><em>Trichoniscus</em> sp. nov.1</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td><em>Chthonius (Chthonius)</em> sp. nov. 2</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td><em>Neobium (Blothrus) vjetrenicae</em> Hadži 1932</td>
<td>Tb</td>
</tr>
<tr>
<td>Tricladida, Planariidae</td>
<td><em>Crenobia alpina anophthalma</em> (Mrazek 1907)</td>
<td>Sb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Penicillium</em> Link (spec. nov. - sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td><em>Cephalotrichum</em> sp. nov.(sp1)</td>
<td>Tb</td>
</tr>
</tbody>
</table>
Viša taksonomska kategorija | Svojta | Ekol.
--- | --- | ---
Fungi | *Ascomycota* Caval.- Sm. sp4 | Tb?
Fungi | *Pseudogymnoascus* Raillo sp1 | Tb?
Mycelia Sterilia | *Mycelia sterilia* sp10 | Tb?

### 4.2.111 Vranja jama

Tablica 4.2.78. Vranja jama.

| Viša taksonomska kategorija | Svojta | Ekol.
--- | --- | ---
Collembola, Onychiuridae | *Spinonychiurus* cf. *vandeli* (Cassagnau, 1960) | Tb
Coleoptera, Carabidae | *Neotrechus* sp. | Tb
Coleoptera, Leiodidae | *Speonesiotes* (*Speonesiotes*) *narentinus* (Miller 1861) ssp. | Tb
Gastropoda, Pristilomatidae | *Vitrea zilchi* L. Pinter, 1972 | Tb
Pseudoscorpiones, Chthoniidae | *Chthonius* (*Chthonius*) sp. nov. 3 | Tb
Pseudoscorpiones, Neobisiidae | *Roncus* sp. | Tb
Acari, Parasitidae | *Pergamasus* *epigynialis* Willmann, 1940 | Tb
Tricladida, Dugesiidae | *Dugesia* *absoloni* (Komarek 1919) | Tb

### 4.2.112 Vranja peč

Tablica 4.2.79. Vranja peč.

| Viša taksonomska kategorija | Svojta | Ekol.
--- | --- | ---
Amphipoda, Niphargidae | *Niphargus* sp. 1 | Sb
Acari, Labidostommatidae | *Nicoletiella* *absoloni* Willmann, 1940 | Tb
Araneae, Dysderidae | *Stalagtit hercegovinensis* (Nosek, 1905) | Tb
Collembola, Entomobryidae | *Verhoeffiella* *longicornis* (Absolon 1900) | Tb
Collembola, Entomobryidae | *Verhoeffiella* *media* (Loks & Bogojević, 1967) | Tb
Collembola, Oncopoduridae | *Oncopodura* *jugoslavica* *Absolon* & Kseneman 1932 | Tb
Coleoptera, Carabidae | *Neotrechus* *suturalis* (Schauffuss 1864) ssp. | Tb
Coleoptera, Leioididae | *Speonesiotes* (*Speonesiotes*) *narentinus latitarsis* (Apfelbeck, 1919) | Tb
Coleoptera, Leioididae | *Anthroherpon* *apfelbecki* (Müller, 1910) ssp. | Tb
Coleoptera, Pselaphinae | *Troglamaurops* sp. | Tb
Diplopoda, Polydesmidae | *Brachydesmus* *stygivagus* Verhoeff, 1899 | Tb
Diplopoda, Polyzonida | *Polyzoniiida* sp. nov. | Tb
Diplopoda, Julidae | *Typhloiolus* sp. | Tb
Diplura, Campodeidae | *Plusiocampa* (*Stygicampa*) *remyi* Conde, 1947 | Tb
Diplura, Campodeidae | *Plusiocampa* (*Stygicampa*) sp. nov. | Sb
Gastropoda, Aciculidae | *Pholeterias* *euthrix* Sturany, 1904 | Tb
Gastropoda, Carychidae | *Zospeum* *amoenum* (Frauenfeld, 1856) | Tb
Gastropoda, Milacidae | *Tandonia* *cavicola* (Simroth 1916)? | Tb
4.2.113 Vrulja Morašnica

Nisu utvrđeni špiljski organizmi.

4.2.114 Vrulja Stupski jaz

Nisu utvrđeni špiljski organizmi.

4.2.115 Zmajeva peć

Tablica 4.2.80. Zmajeva peć.

<table>
<thead>
<tr>
<th>Viša taksonomska kategorija</th>
<th>Svojta</th>
<th>Ekol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastropoda, Vertiginidae</td>
<td>Spelaecooncha paganettii polymorpha A.J. Wagner, 1914</td>
<td>Tb</td>
</tr>
<tr>
<td>Gastropoda, Pristilomatidae</td>
<td>Vitrea zilchi L. Pinter, 1972</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniscus heroldi (Verhoeff, 1931)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Alpioniscus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Cyphonethes herzegovinensis (Verhoeff, 1900)</td>
<td>Tb</td>
</tr>
<tr>
<td>Isopoda, Trichoniscidae</td>
<td>Troglocyphoniscus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Oligochaeta, Lumbricidae</td>
<td>Lumbriculidae, Gen/sp</td>
<td>Sb</td>
</tr>
<tr>
<td>Opiliones, Sironidae</td>
<td>Cyphophthalmus sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthonius (Chthonius) trebinjensis Beier, 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Chthoniidae</td>
<td>Chthoniidae, Nov. Gen.nov.sp.</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Roncus anophthalmus (Ellingsen, 1910)</td>
<td>Tb</td>
</tr>
<tr>
<td>Pseudoscorpiones, Neobisiidae</td>
<td>Neobisium (Blothrus) lethaeum Beier 1938</td>
<td>Tb</td>
</tr>
<tr>
<td>Tricladida, Dugesiidae</td>
<td>Dugesia absoloni (Komarek 1919)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Trichuras sp. nov. (sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Pseudogymnoascus Raillo sp2</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Nomuraeu Maubl. Sp2</td>
<td>Tb?</td>
</tr>
<tr>
<td>Fungi</td>
<td>Penicilliun Link (spec. nov. - sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Cephalotrichum sp. nov.(sp1)</td>
<td>Tb</td>
</tr>
<tr>
<td>Fungi</td>
<td>Hypocreaceae De. Not. sp1</td>
<td>Tb?</td>
</tr>
</tbody>
</table>

85
Viša taksonomska kategorija | Svojta | Ekol.
--- | --- | ---
Gastropoda, Pristilomatidae | Vitrea zilchi L. Pinter, 1972 | Tb
Isopoda, Trichoniidae | Cyphoniscellus herzegovinensis (Verhoeff, 1900) | Tb
Isopoda, Trichoniidae | Cyphonethes herzegovinensis (Verhoeff, 1900) | Tb
Opiliones, Travuniididae | Travania anophthalma Absolon & Kratochvil, 1927 | Tb
Isopoda, Trichoniidae | Chthonius (Chthonius) absoloni Beier, 1939 | Tb
Fungi | Spelaeodiscus sp. nov. (prov. croaticus Matočec & I. Kušan n.p.) | Tb
Fungi | Onygenales Cif. ex Benny & Kimbr. Sp11 | Tb?
Fungi | Trichurus Clem. sp2 | Tb?

4.3 Popis utvrđene faune pravih špiljskih vrsta

Na području Dubrovačko-neretvanske županije (DNŽ) dosadašnjim istraživanjima utvrđeno je preko 350 pravih špiljskih vrsta, troglobionata i stigobionata. Područje projektog istraživanja obuhvatilo je kopneni dio Županije, od Delte Neretve preko Dubrovačkog primorja, grada Dubrovnika, Župe dubrovačke sve do Konavala i masiva Sniježnice i Bjelotine. Na ovom, kontinentalnom području Županije obitava gotovo 300 pravih špiljskih vrsta, od kojih je većina znanstveno opisana, ali veliki broj špiljskih svojti još nije, s time da se svakim sustavnim istraživanjem ovaj broj povećava.

Na području DNŽ do kraja 2014. godine utvrđeno je 46 tipskih lokaliteta špiljske faune (locus typicus) iz kojih je opisano ukupno 110 faunističkih svojti od kojih su 102 taksonomski validne. Zvjezdicom (*) su označene svojte koje nisu validne, one koje su sinonimizirane i gola imena (nomen nudum). Na istraživanom području, uključujući i poluotok Pelješac, utvrđeno je 27 tipskih lokaliteta špiljske faune (locus typicus) iz kojih je opisano ukupno 66 faunističkih svojti od kojih je 60 svojti taksonomski validno (Tablica 4.3.1).

Tablica 4.3.1 Popis tipskih špiljskih lokaliteta i opisanih svojti špiljske faune istraživanog područja Dubrovačko-neretvanske županije. Zvjezdicom (*) su označene svojte koje nisu validne, one koje su sinonimizirane i gola imena (nomen nudum).

<table>
<thead>
<tr>
<th>RB</th>
<th>Speleološki objekt</th>
<th>Regija</th>
<th>Opisana svojta</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Bobaj 2 jama</td>
<td>Donja Neretva</td>
<td>Cyphophthalmus neretvanus I. Karaman, 2009</td>
</tr>
<tr>
<td>3.</td>
<td>Ćoćina jama</td>
<td>Donja Neretva</td>
<td>Trichoniscus matalii metkovicensis Buturović, 1955</td>
</tr>
<tr>
<td>5.</td>
<td>Đurovića špilja</td>
<td>Konavle</td>
<td>Abasola troglodytes (Roewer, 1915) Troglamaurops scheibeli (G. Müller, 1944)</td>
</tr>
<tr>
<td>7.</td>
<td>Izvor kod Sopot mlina</td>
<td>Donja Neretva</td>
<td>Theodoxus subterrelictus Schütt, 1963</td>
</tr>
<tr>
<td>RB</td>
<td>Speleološki objekt</td>
<td>Regija</td>
<td>Opisana svojta</td>
</tr>
<tr>
<td>----</td>
<td>--------------------</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>8.</td>
<td>Izvor Palat</td>
<td>Dubr. primorje</td>
<td>Saxurinator labiatus (Schütt, 1968)</td>
</tr>
<tr>
<td>10.</td>
<td>Jezero špilja</td>
<td>Konavle</td>
<td>Neobisium hadžii Beier, 1939</td>
</tr>
<tr>
<td>11.</td>
<td>Mala špilja između Dubrovnika i Komolca</td>
<td>Dubrovnik</td>
<td>Seracamaurops cadmoei Pavičević &amp; Ozimec, 2013</td>
</tr>
<tr>
<td>12.</td>
<td>Mala špilja na Pelješcu</td>
<td>Pelješac</td>
<td>Neotrechus paganetti winneguthi Scheibel, 1937</td>
</tr>
<tr>
<td>13.</td>
<td>Izvor Mislina</td>
<td>Donja Neretva</td>
<td>Emmericia narentana Bourguignat, 1880</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Proasellus anophthalmus dalmatinus (S. Karaman, 1955)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trogulus ozimeci Schonhofer, I. Karaman &amp; Martens, 2013</td>
</tr>
<tr>
<td>15.</td>
<td>Šipun špilja</td>
<td>Konavle</td>
<td>Saxurinator sketi (Bole, 1960)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Folkia purkrabeki Kratochvil, 1970*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Histopona dubia (Absolon et Kratochvil, 1933)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Palliduphantes hrigonli (Kratochvil, 1978)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chthonius magnificus Beier, 1939</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neobisium lethaem superbum Beier, 1939</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Belba gratiosa Willmann, 1940</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Speleaeothrombium caecum caecum Willmann, 1940</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Speleaeothrombium caecum grandis Willmann, 1940*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nothrotrombidium bulbifera (Willmann, 1940)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Metacyclops trisetosus Herbst, 1957</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thermocyclops dalmatica Petkovski, 1956</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salentinella gracillima balcanica S. Karaman, 1953*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tetlyshaena halophila (S.L. Karaman, 1953)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pseudosinella heteromuroides Absolon, 1932*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pholeuonella erberii epidaurica Z. Karaman, 1953</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Speonesiotes narentinus latitarsis (Apfelbeck, 1919)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tychothythius neumannii (J. Müller, 1909)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Merozoon vestigatum Sket, 2012</td>
</tr>
<tr>
<td>16.</td>
<td>Škrabuljica špilja</td>
<td>Konavle</td>
<td>Cyphophthalmus minutus Kratochvil, 1937</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cyphophthalmus kratochvili I. Karaman, 2009</td>
</tr>
<tr>
<td>17.</td>
<td>Šolkina jama</td>
<td>Donja Neretva</td>
<td>Roncus narentae Dimitrijević &amp; Rada, 2008</td>
</tr>
<tr>
<td>RB</td>
<td>Speleološki objekt</td>
<td>Regija</td>
<td>Opisana svojta</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------</td>
<td>--------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>18.</td>
<td>Špilja kod Brašine Petrače</td>
<td>Župa</td>
<td>Neobisium gentile giganteum Beier, 1939</td>
</tr>
<tr>
<td>19.</td>
<td>Špilja kod Dubrovnika</td>
<td>Dubrovnik</td>
<td>Dolichopoda cavatica (Becker, 1889)</td>
</tr>
<tr>
<td>20.</td>
<td>Gorska jama</td>
<td>Pelješac</td>
<td>Troglamaurops leptoderina (Reitter, 1901) Neothyscius tristicultris tristicultris (Apfelbeck, 1907) Neotrechus winneguthi Scheibel, 1937 Anomnatus titanus Reitter, 1901</td>
</tr>
<tr>
<td>21.</td>
<td>Špilja na koti 961 Sv. Ilija</td>
<td>Pelješac</td>
<td>Laemostenus cavliced trebiniensis J. Müller, nom.nud.*</td>
</tr>
<tr>
<td>22.</td>
<td>Špilja u dolini Neretve</td>
<td>Donja Neretva</td>
<td>Neotrechus amabilis (Schauffuss, 1863) Alpioniscus verhoeffi (Strouhal, 1938) Hypochton (=Proteus) carrareae Fitzinger, 1850*</td>
</tr>
<tr>
<td>23.</td>
<td>Špilja u okolici Dubrovnika</td>
<td>Dubrovnik</td>
<td>Dolichopoda araneiformis (Burmeister, 1838)</td>
</tr>
<tr>
<td>24.</td>
<td>Špilja za Gromačkom vlakom</td>
<td>Dubr. primorje</td>
<td>Accubogammarus algor jazici G. Karaman, 1988</td>
</tr>
<tr>
<td>25.</td>
<td>Turbina špilja</td>
<td>Konavle</td>
<td>Litthabitella chilioda (Westerlund, 1884)</td>
</tr>
</tbody>
</table>

Da ovo područje Županije treba i dalje sustavno istraživati, dokazuju nalazi novih vrsta za znanost, kojima tek predstoji znanstveni opis. Po biološkoj raznovrsnosti i dosadašnjem intenzitetu stručnih i znanstvenih istraživanja, ovo je područje vrstama najbogatije na području Hrvatske, ujedno i jedno od najbogatijih na području Dinarida, a time i jedno od najbogatijih područja svijeta uopće. Preko 90% špiljske faune ovog sustava endemično je za južno-dinarsku biogeografsku regiju, brojne vrste endemi su Hrvatske, a neke svojte su zasad poznate samo s ovoga područja.

Tablica 4.3.2 Popis utvrđenih špiljskih svojstava istraživanog područja (kopnenog dijela Dubrovačko-neretvanske županije).

Legenda kratica korištenih u tablici:

<table>
<thead>
<tr>
<th>Taksonomske definicije</th>
<th>cf.</th>
<th>ne sigurno determinirana svojta (confirmis – sliči na)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen. nov.</td>
<td>novi, još neopisani rod za znanost</td>
<td></td>
</tr>
<tr>
<td>sp. nov.</td>
<td>nova, još neopisana vrsta za znanost</td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td>svojta determinirana samo do razine roda</td>
<td></td>
</tr>
<tr>
<td>Gen./sp.</td>
<td>svojta nije taksonomski određena do razine roda i vrste</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ekološka kategorija (EKO)</th>
<th>Tb</th>
<th>troglobiont</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb</td>
<td>stigobiont</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endemizam (END)</th>
<th>DNZ</th>
<th>endem Dubrovačko-neretvanske županije</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>endem južno-dinarske biogeografske regije (uključuje Hercegovinu i Crnu Goru)</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>endem Dinarida</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>trenutno nemoguće definirati endemizam</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipski lokalitet (LT)</th>
<th>lt</th>
<th>svojta opisana iz DNŽ</th>
</tr>
</thead>
</table>

| Jedino nalazište u RH (JN) | jn | svojta za Hrvatsku utvrđena samo u DNŽ |

<table>
<thead>
<tr>
<th>Ugroženost (IUCN)</th>
<th>CR</th>
<th>kritično ugrožena svojta</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>ugrožena svojta</td>
<td></td>
</tr>
<tr>
<td>YU</td>
<td>osjetljiva svojta</td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>nedostaju podaci za razinu ugroženosti</td>
<td></td>
</tr>
<tr>
<td>NT</td>
<td>svojta nije ugrožena, ali bi mogle postati</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Istraživanost (IST)</th>
<th>PN</th>
<th>svojta utvrđena prethodnim i recentnim istraživanjem</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>svojta utvrđena samo prethodnim istraživanjem</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>svojta utvrđena samo recentnim istraživanjem</td>
<td></td>
</tr>
</tbody>
</table>

| Broj objekata (SO) | (broj) | broj speleoloških objekata u kojima je utvradena svojta |

<p>| Sustav Vilina špilja-izvor Omble(VO) | da | Prisutnost svojstva u sustavu Vilina špilja-izvor Omble |</p>
<table>
<thead>
<tr>
<th>RB</th>
<th>Taksonomska kategorija</th>
<th>EKO</th>
<th>END</th>
<th>LT</th>
<th>JN</th>
<th>IUCN</th>
<th>IST</th>
<th>SO</th>
<th>VO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>ASCOMYCOTA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td><em>Beauveria</em> sp.1</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><em>Beauveria</em> sp.3</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><em>Beauveria</em> sp.4</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><em>Calyptellopsis</em> sp.1</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><em>Calyptellopsis</em> sp.2</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><em>Cephalotrichum</em> sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><em>Cephalotrichum</em> sp.2</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><em>Cephalotrichum</em> sp.3</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><em>Cephalotrichum</em> sp.4</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><em>Doratomyces</em> sp. nov.1</td>
<td>Tb</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td><em>Doratomyces</em> sp. nov.2</td>
<td>Tb</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><em>Gibellula</em> sp.1</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><em>Gibellula</em> sp.2</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td><em>Gymnoascus</em> sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td><em>Hirsutella</em> sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td><em>Hyphomycetes</em> sp.</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td><em>Isaria</em> sp.</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td><em>Nannizziopsis</em> sp. nov.</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td><em>Nomuraea</em> sp.1</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td><em>Nomuraea</em> sp.2</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td><em>Nomuraea</em> sp.3</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td><em>Ombrophila</em> sp. nov.</td>
<td>Tb?</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td><em>Penicillium</em> sp. nov.1</td>
<td>Tb</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td><em>Penicillium</em> sp. nov.2</td>
<td>Tb</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td><em>Penicillium</em> sp. 3</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td><em>Pidoplitchkoviella</em> sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>Taksonomska kategorija</td>
<td>EKO</td>
<td>END</td>
<td>LT</td>
<td>JN</td>
<td>IUCN</td>
<td>IST</td>
<td>SO</td>
<td>VO</td>
</tr>
<tr>
<td>----</td>
<td>------------------------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>27</td>
<td><em>Polycephalomyces</em> sp.1</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td><em>Pseudogymnoascus</em> sp.1</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td><em>Pseudogymnoascus</em> sp.2</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td><em>Spelaeodiscus</em> sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>ja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td><em>Talaromyces</em> sp.1</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td><em>Trichurus</em> sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>ja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td><em>Trichurus</em> sp.2</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td><em>Trichurus</em> sp.3</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td><em>Trichurus</em> sp.4</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td><em>Volutella</em> sp.1</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Fam. <em>Ascodesmidaceae</em>, Gen/sp</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Fam. <em>Hypocreaceae</em>, Gen/sp</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Fam. <em>Ophiocordycipitaceae</em>, Gen/sp.1</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Fam. <em>Ophiocordycipitaceae</em>, Gen/sp.2</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Ordo <em>Onygenales</em>, Gen/sp.3</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Ordo <em>Onygenales</em>, Gen/sp.5</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Ordo <em>Onygenales</em>, Gen/sp.6</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Ordo <em>Onygenales</em>, Gen/sp.7</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Ordo <em>Onygenales</em>, Gen/sp.8</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Ordo <em>Onygenales</em>, Gen/sp.9</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Ordo <em>Onygenales</em>, Gen/sp.10</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Ordo <em>Onygenales</em>, Gen/sp.11</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Gen/sp.2</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Gen/sp.3</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Gen/sp.4</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Gen/sp.5</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Gen/sp.6</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Gen/sp.7</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>Taksonomska kategorija</td>
<td>EKO</td>
<td>END</td>
<td>LT</td>
<td>JN</td>
<td>IUCN</td>
<td>IST</td>
<td>SO</td>
<td>VO</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------------------------------------------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>55</td>
<td>Gen/sp.8</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Gen/sp.9</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td><strong>ZYGOMYCOTA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td><em>Syncphalis</em> sp. nov.</td>
<td>Tb?</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td></td>
<td>P</td>
<td>1</td>
<td>da</td>
</tr>
<tr>
<td>59</td>
<td><em>Macor</em> sp.1</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Fam. Kickxellaceae, Gen/sp</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td><strong>FUNGI</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Mycelia sterilia sp.7</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Mycelia sterilia sp.9</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Mycelia sterilia sp.10</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Mycelia sterilia sp.11</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Mycelia sterilia sp.12</td>
<td>Tb?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**Životinje (REGNUM ANIMALIA)**

<table>
<thead>
<tr>
<th>RB</th>
<th>Taksonomska kategorija</th>
<th>EKO</th>
<th>END</th>
<th>LT</th>
<th>JN</th>
<th>IUCN</th>
<th>IST</th>
<th>SO</th>
<th>VO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><em>Dendrocoelum</em> cf. <em>kenki</em> de Beauchamp 1937</td>
<td>Sb</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>2</td>
<td>da</td>
</tr>
<tr>
<td>2</td>
<td><em>Crenobia</em> cf. <em>alpina anophthalma</em> Mrazek 1907</td>
<td>Sb</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><em>Dugesia</em> cf. <em>absoloni</em> (Komarek 1919)</td>
<td>Tb</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><em>Prostoma</em> cf. <em>hercegovinense</em> Tarman, 1961</td>
<td>Sb</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>1</td>
<td>da</td>
</tr>
<tr>
<td>5</td>
<td>Gen/sp.</td>
<td>Sb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>2</td>
<td>da</td>
</tr>
<tr>
<td>6</td>
<td>Fam. Enchytraeidae, Gen/sp</td>
<td>Sb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fam. Tubificidae, Gen/sp</td>
<td>Sb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Fam. Lumbriculidae, Gen/sp</td>
<td>Sb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Gen/sp</td>
<td>Sb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>2</td>
<td>da</td>
</tr>
<tr>
<td>10</td>
<td><em>Marifugia cavatica</em> Absolon &amp; Hrabe 1930</td>
<td>Sb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DD</td>
<td>PN</td>
<td>12</td>
</tr>
<tr>
<td>RB</td>
<td>Taksonomska kategorija</td>
<td>EKO</td>
<td>END</td>
<td>LT</td>
<td>JN</td>
<td>IUCN</td>
<td>IST</td>
<td>SO</td>
<td>VO</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>
| 11 | HIRUDINEA
  11 | Dina absoloni Johansson, 1913 | Sb | e | CR | PN | 2 |
| 12 | MOLLUSCA
  12 | Congeria kusceri Bole 1962 | Sb | e | CR | PN | 6 Da |
| 13 | BIVALVIA
  13 | Belgrandia torifera Schutt 1961 | Sb | E | EN | PN | 12 da |
| 14 | GASTROPODA
  14 | Hausfenia edlaueri (Schutt 1961) | Sb | E | PN | 4 da |
| 15 | HYDROBIIDAE
  15 | Hausfenia plana Bole 1961 | Sb | E | PN | 5 da |
| 16 | 16 | Horatia knorri Schutt 1961 | Sb | E | It | jn | CR | PN | 2 da |
| 17 | 17 | Iglica absoloni (A. J. Wagner 1914) | Sb | E | EN | PN | 8 da |
| 18 | 18 | Iglica baggliviaeformis Schutt 1970 | Sb | E | It | EN | PN | 4 da |
| 19 | 19 | Lanzaia vjetrenicae kusceri Karaman 1954 | Sb | E | It | jn | CR | PN | 6 da |
| 20 | 20 | Lanzaia vjetrenicae latecostata Schütt, 1968 | Sb | E | jn | P | 1 |
| 21 | 21 | Lanzaia vjetrenicae vjetrenicae Kuščer 1933 | Sb | E | jn | CR | PN | 8 da |
| 22 | 22 | Orientalina troglobia (Bole 1961) | Sb | E | PN | 4 da |
| 23 | 23 | Plagigeveryera nitida angelovi Schutt 1972 | Sb | E | P | 1 da |
| 24 | 24 | Plagigeveryera robusta asculpta Schutt 1972 | Sb | E | It | PN | 7 da |
| 25 | 25 | Plagigeveryera robusta robusta Schutt 1959 | Sb | E | It | jn | CR | P | 1 da |
| 26 | 26 | Saxurinator brandti Schutt 1968 | Sb | E | EN | PN | 4 da |
| 27 | 27 | Saxurinator labiatus (Schutt, 1968) | Sb | E | It | CR | P | 1 |
| 28 | 28 | Saxurinator sketi (Bole, 1960) | Sb | E | It | EN | P | 1 |
| 29 | CARYCHIIDAE
  29 | Zospeum amoenum (Frauenfeld 1856) | Tb | e | PN | 6 da |
| 30 | CYCLOPHORIDAE
  30 | Pholeoteras euthrix Sturany 1904 | Tb | E | VU | PN | 20 da |
| 31 | STROBILOPSIIDAE
  31 | | | | | |

93
<table>
<thead>
<tr>
<th>RB</th>
<th>Taksonomska kategorija</th>
<th>EKO</th>
<th>END</th>
<th>LT</th>
<th>JN</th>
<th>IUCN</th>
<th>IST</th>
<th>SO</th>
<th>VO</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Virpazaria pageti kletecki Štamol &amp; Subai, 2012</td>
<td>Tb</td>
<td>DNZ</td>
<td>lt</td>
<td>jn</td>
<td>PN</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MILACIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Tandonia cavicola (Simroth, 1916)</td>
<td>Tb</td>
<td>e</td>
<td></td>
<td></td>
<td>N</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NERITIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Theodoxus subterrelictus Schütt, 1963</td>
<td>Sh</td>
<td>E</td>
<td>lt</td>
<td>VU</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRISTILOMATIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Vitrea zilchi L. Pinter, 1972</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td>VU</td>
<td>PN</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VERTIGINIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Spelaconcha paganettii polymorpha A. J. Wagner, 1914</td>
<td>Tb</td>
<td>e</td>
<td></td>
<td></td>
<td>VU</td>
<td>PN</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZONITIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Aegopis spelaeus A. J. Wagner, 1914</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td>CR</td>
<td>PN</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARACHNIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Eukeoenenia cf. remyi Conde, 1974</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td></td>
<td>P</td>
<td>1</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PALPIGRADI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Eukeoenenia pretneri Conde, 1977</td>
<td>Tb</td>
<td>DNZ</td>
<td>lt</td>
<td>jn</td>
<td>CR</td>
<td>PN</td>
<td>1</td>
<td>da</td>
</tr>
<tr>
<td></td>
<td>ARANEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Folkia inermis (Absolon et Kratochvil, 1932)</td>
<td>Tb</td>
<td>DNZ</td>
<td>lt</td>
<td>jn</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DYSDERIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Stalagitia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
<td>e</td>
<td></td>
<td></td>
<td>PN</td>
<td>43</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINYPHIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Typhlorhode sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td>PN</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>Centromerus sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Palliduphantes brignolii (Kratochvil, 1978)</td>
<td>Tb</td>
<td>e</td>
<td>lt</td>
<td>jn</td>
<td>CR</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Palliduphantes sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>jn</td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Troglohyphantes lesserti Kratochvil, 1935</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td></td>
<td>N</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Troglohyphantes (Troglohyphantes) pugnax Deeleman-Reinhold, 1978</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td></td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Troglohyphantes (Troglohyphantes) salax (Kulczynski, 1914)</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td></td>
<td>PN</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Troglohyphantes (Troglohytia) troglodytes (Kulczynski, 1914)</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td></td>
<td>PN</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>Taksonomska kategorija</td>
<td>EKO</td>
<td>END</td>
<td>LT</td>
<td>JN</td>
<td>IUCN</td>
<td>IST</td>
<td>SO</td>
<td>VO</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>49</td>
<td><em>Troglohyphantes</em> sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td></td>
<td></td>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td><em>Typhlonyphia reimoseri reimoseri</em> Kratochvil, 1936</td>
<td>Tb</td>
<td>e</td>
<td>lt</td>
<td>VU</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td><em>Walckenaria</em> sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td></td>
<td></td>
<td>PN</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td><em>Histopona dubia</em> (Absolon &amp; Kratochvil, 1933)</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td>PN</td>
<td>9</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td><em>Histopona krivosijana</em> (Kratochvil, 1935)</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td>jn</td>
<td>P</td>
<td>1</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td><em>Barusia</em> sp. nov.</td>
<td>Tb</td>
<td>e</td>
<td></td>
<td></td>
<td>N</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td><em>Sulica</em> occulta Kratochvil, 1938</td>
<td>Tb</td>
<td>e</td>
<td></td>
<td></td>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td><em>Sulica orientalis</em> (Kulczynski, 1914)</td>
<td>Tb</td>
<td>e</td>
<td></td>
<td></td>
<td>PN</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td><em>Sulica</em> sp. nov.</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>1</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td><em>Nesticus arenstorffi</em> Kulczynski 1914</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td><em>Stygopholcus absoloni</em> (Kulczynski 1914)</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td><em>Stygopholcus skotophilus montenegrinus</em> Kratochvil 1940</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td><em>Chthonius</em> (<em>Chthonius</em>) absoloni Beier, 1939</td>
<td>Tb</td>
<td>e</td>
<td></td>
<td></td>
<td>PN</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td><em>Chthonius</em> (<em>Chthonius</em>) croaticus B. Ćurčić &amp; Rada, 2012</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td>jn</td>
<td>PN</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td><em>Chthonius</em> (<em>Chthonius</em>) exarmatus Beier, 1939</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td>CR</td>
<td>PN</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td><em>Chthonius</em> (<em>Chthonius</em>) magnificus Beier, 1939</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td></td>
<td>EN</td>
<td>PN</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td><em>Chthonius</em> (<em>Chthonius</em>) trebinjensis Beier, 1938</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td>CR</td>
<td>PN</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td><em>Chthonius</em> (<em>Chthonius</em>) sp. nov.1</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td><em>Chthonius</em> (<em>Chthonius</em>) sp. nov.2</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td><em>Chthonius</em> (<em>Chthonius</em>) sp. nov.3</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td><em>Chthonius</em> (<em>Eppiphiochthonius</em>) insularis Beier, 1938</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td>PN</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td><em>Chthonius</em> (<em>Eppiphiochthonius</em>) sp. nov.</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>Taksonomska kategorija</td>
<td>EKO</td>
<td>END</td>
<td>LT</td>
<td>JN</td>
<td>IUCN</td>
<td>IST</td>
<td>SO</td>
<td>VO</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------------------------------------------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>71</td>
<td>Chthonius (Globbochthonius) caligatus Beier, 1939</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td>PN</td>
<td>3</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Chthonius (Globbochthonius) sp. nov.</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Troglochthonius mirabilis Beier, 1939</td>
<td>Tb</td>
<td>e</td>
<td></td>
<td></td>
<td>VU</td>
<td>PN</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Fam. Chthoniidae, Gen. nov., sp. nov.</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td></td>
<td>PN</td>
<td>4</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEOBISIIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Insulocreagris sp. nov.</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td>PN</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Neobisium (Blothrus) hadzii Beier, 1939</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td></td>
<td>VU</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Neobisium (Blothrus) heros Beier, 1938</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td>PN</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Neobisium (Blothrus) hypochthon Beier, 1938</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>Neobisium (Blothrus) lethaem superbum Beier, 1939</td>
<td>Tb</td>
<td>DNZ</td>
<td>lt</td>
<td></td>
<td>CR</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Neobisium (Blothrus) lethaem parvum Beier, 1939</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>81</td>
<td>Neobisium (Blothrus) lethaem Beier 1938 ssp.3</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>4</td>
</tr>
<tr>
<td>82</td>
<td>Neobisium (Blothrus) occulum Beier, 1939</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>83</td>
<td>Neobisium (Blothrus) umbratile Beier, 1939</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>Neobisium (Blothrus) vachoni Beier, 1939</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td>PN</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Neobisium (Blothrus) vjetrenicae Hadži 1932</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>86</td>
<td>Roncus anophthalmus (Ellingsen, 1910)</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td>DNZ</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Roncus narentae Dimitrijević &amp; Rađa, 2008</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td></td>
<td></td>
<td></td>
<td>DN</td>
<td>2</td>
</tr>
<tr>
<td>88</td>
<td>Roncus rugusae B. Ćurčić, 2012</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td>jn</td>
<td></td>
<td></td>
<td>DN</td>
<td>2</td>
</tr>
<tr>
<td>89</td>
<td>Roncus sp. nov.1</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>Roncus sp. nov.2</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td></td>
<td></td>
<td></td>
<td>PN</td>
<td>3</td>
</tr>
<tr>
<td>91</td>
<td>Roncus sp. nov.3</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>OPILIONES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIRONIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Cyphophthalmus kratochvili I. Karaman, 2009</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td>jn</td>
<td></td>
<td></td>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>93</td>
<td>Cyphophthalmus minutus (Kratochvil, 1938)</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>Cyphophthalmus neretvanus I. Karaman, 2009</td>
<td>Tb</td>
<td>DNZ</td>
<td>lt</td>
<td>jn</td>
<td></td>
<td></td>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>95</td>
<td>Cyphophthalmus silhavyi Kratochvil, 1937</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td></td>
<td>EN</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>Taksonomska kategorija</td>
<td>EKO</td>
<td>END</td>
<td>LT</td>
<td>JN</td>
<td>IUCN</td>
<td>IST</td>
<td>SO</td>
<td>VO</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>96</td>
<td>Cyphophthalmus cf. sp. nov.1</td>
<td>Tb</td>
<td>DNZ</td>
<td>lt</td>
<td>jn</td>
<td>PN</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Cyphophthalmus cf. sp. nov.2</td>
<td>Tb</td>
<td>DNZ</td>
<td>lt</td>
<td>jn</td>
<td>PN</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Travunia anophthalma</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td>EN</td>
<td>PN</td>
<td>8</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Travunia troglodytes (Roewer, 1915)</td>
<td>Tb</td>
<td>DNZ</td>
<td>lt</td>
<td>jn</td>
<td>CR</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Travunia anophthalma (Roewer, 1915)</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td>EN</td>
<td>PN</td>
<td>8</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Trogulus ozimeci Schonhofer, I. Karaman &amp; Martens, 2013</td>
<td>Tb</td>
<td>DNZ</td>
<td>lt</td>
<td>jn</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Metabelbella gratiosa (Willmann, 1940)</td>
<td>Tb</td>
<td>E</td>
<td>PN</td>
<td>3</td>
<td>da</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Labidostomma longipes Willmann, 1940</td>
<td>Tb</td>
<td>E</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Nicoletiella absoloni acuticornis Willmann, 1940</td>
<td>Tb</td>
<td>E</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Nicoletiella absoloni Willmann, 1940 ssp.</td>
<td>Tb</td>
<td>E</td>
<td>PN</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Diplopodophilus antennophoroides Willmann, 1940</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Holoparasitus absoloni (Willmann 1940)</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Pergamasus epigynialis Willmann, 1940</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Traegaardhia dalmatina (Willmann 1939)</td>
<td>Tb</td>
<td>e</td>
<td>PN</td>
<td>5</td>
<td>da</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Spelaeothrombium caecum Willmann, 1940</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td>EN</td>
<td>PN</td>
<td>3</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Nothrotrombidium bulbifera (Willmann, 1940)</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td>CR</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Metacylops trisetosus Herbst, 1957</td>
<td>Sb</td>
<td>DNZ</td>
<td>lt</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>Taksonomska kategorija</td>
<td>EKO</td>
<td>EN</td>
<td>LT</td>
<td>JN</td>
<td>IUCN</td>
<td>IST</td>
<td>SO</td>
<td>VO</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>113</td>
<td>Diacyclops antrincola Kiefer, 1967</td>
<td>Sb</td>
<td>DNZ</td>
<td></td>
<td></td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Thermocyclops dalmatica Petkovski, 1956</td>
<td>Sb</td>
<td>DNZ</td>
<td>lt</td>
<td></td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MALACOSTRACA

AMPHIPODA

BOGIDIELLIDAE

115 | Bogidiella sp.cf. nov. | Sb | DNZ |     |     | N    | 1   |    |    |

GAMMARIDAE

116 | Accubogammarus algor jalzici G. Karaman, 1988 | Sb | E   | lt |     | CR   | PN  | 2   | da |
| 117 | Typhlogammarus mrazki (Schaferna, 1906) | Sb | e   |    |     | EN   | PN  | 2   | da |

HADZIIDAE

118 | Hadzia fragilis Karaman, S. Karaman, 1932 | Sb | E   |    |     | PN   | 3   | da |    |

NIPHARGIDAE

119 | Niphargus balcanicus (Absolon, 1927) | Sb | E   | jn |     | PN   | 2   | da |    |
| 120 | Niphargus boskovici S. Karaman, 1952 | Sb | E   | jn |     | PN   | 2   |    |    |
| 121 | Niphargus hvarenensis S. Karaman, 1952 | Sb | e   |    |     | VU   | PN  | 2   | da |
| 122 | Niphargus hercegovinensis S. Karaman, 1952 | Sb | e   |    |     | P    | 1   | da |    |
| 123 | Niphargus kolombatovici S. Karaman, 1950 | Sb | E   |    |     | PN   | 6   | da |    |
| 124 | Niphargus kusceri S. Karaman 1950 | Sb | E   |    |     | PN   | 1   |    |    |
| 125 | Niphargus salonitanus S. Karaman, 1950 | Sb | e   |    |     | PN   | 2   |    |    |
| 126 | Niphargus trullipes Sket, 1958 | Sb | e   |    |     | CR   | P   | 1   | da |
| 127 | Niphargus vjetrenicensis S. Karaman, 1932 | Sb | E   | jn |     | PN   | 2   | da |    |
| 128 | Niphargus sp.1 | Sb | ?   |    |     |     | 3   |    |    |
| 129 | Niphargus sp.2 | Sb | ?   |    |     |     | 1   |    |    |

SALENTINELLIDAE

130 | Salentinella angelieri Ruffo & Delamare Deboutteville, 1952 | Sb |     |    |     |     | PN  | 1   |    |

ISOPODA

ASELLIDAE

131 | Proasellus anophthalmus dalmatinus (S. Karaman, 1955) | Sb | E   | lt |     | CR   | PN  | 1   |    |
<table>
<thead>
<tr>
<th>RB</th>
<th>Taksonomska kategorija</th>
<th>EKO</th>
<th>END</th>
<th>LT</th>
<th>JN</th>
<th>IUCN</th>
<th>IST</th>
<th>SO</th>
<th>VO</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>Proasellus anophthalmus rhausinus (Remy, 1941)</td>
<td>Sb</td>
<td>E</td>
<td>lt</td>
<td>EN</td>
<td>P</td>
<td>1</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Proasellus anophthalmus (S. Karaman 1934) ssp.</td>
<td>Sb</td>
<td>E</td>
<td></td>
<td>PN</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Proasellus spelaeus longisetus Remy, 1941</td>
<td>Sb</td>
<td>E</td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIROLANIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Sphaeromides virei virei Brian 1923</td>
<td>Sb</td>
<td>e</td>
<td></td>
<td>VU</td>
<td>PN</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Sphaeromides virei cf. montenegrina Sket, 1957</td>
<td>Sb</td>
<td>E</td>
<td>jn</td>
<td></td>
<td>P</td>
<td>1</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>MICROPARASELLIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Microcharon hercegovinensis (S. Karaman, 1959)</td>
<td>Sb</td>
<td>E</td>
<td>jn</td>
<td></td>
<td>CR</td>
<td>P</td>
<td>1</td>
<td>da</td>
</tr>
<tr>
<td>SPHAEROMATIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>Monolistra hercegovinii ornata S. Karaman, 1953</td>
<td>Sb</td>
<td>E</td>
<td>jn</td>
<td></td>
<td>PN</td>
<td>2</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Merozoon vestigatum Sket, 2012</td>
<td>Sb</td>
<td>E</td>
<td>lt</td>
<td>jn</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRICHONISCIDAЕ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Aegonethes cervinus (Verhoeff, 1931)</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td></td>
<td>PN</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Aegonethes sp.</td>
<td>Tb</td>
<td>?</td>
<td></td>
<td></td>
<td>PN</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Alpioniscus heroldi (Verhoeff, 1931)</td>
<td>Tb</td>
<td>e</td>
<td></td>
<td>VU</td>
<td>PN</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Alpioniscus verhoefi (Strouhal, 1938)</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td></td>
<td>CR</td>
<td>PN</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Alpioniscus sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td></td>
<td>N</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Cyphonethes herzegowinensis (Verhoeff, 1900)</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td>PN</td>
<td>23</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Cyphoniscellus herzegowinensis (Verhoeff, 1900)</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td>VU</td>
<td>PN</td>
<td>11</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Njegosiella sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td></td>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>Trichoniscus sp. nov.1</td>
<td>Tb</td>
<td>DNZ</td>
<td></td>
<td>N</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>Trichoniscus sp. nov.2</td>
<td>Tb</td>
<td>DNZ</td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Troglocyphoniscus absoloni Strouhal, 1939</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Troglocyphoniscus sp.</td>
<td>Tb</td>
<td>?</td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>Gen. nov. sp. nov.?</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td></td>
<td>P</td>
<td>1</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>DECAPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Troglocaris (Spelaecaris) presence Sket &amp; Zakšek, 2009</td>
<td>Sb</td>
<td>E</td>
<td></td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Troglocaris (Spelaecaris) pretneri (Matjašić, 1956)</td>
<td>Sb</td>
<td>E</td>
<td></td>
<td>EN</td>
<td>PN</td>
<td>2</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>Taksonomska kategorija</td>
<td>EKO</td>
<td>END</td>
<td>LT</td>
<td>JN</td>
<td>IUCN</td>
<td>IST</td>
<td>SO</td>
<td>VO</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>155</td>
<td>Troglocaris (Troglocaridella) hercegovinensis (Babić, 1922)</td>
<td>Sb</td>
<td>E</td>
<td>jn</td>
<td>PN</td>
<td>2</td>
<td>da</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Troglocaris (Troglocaris) anophthalmus periadiatica Jugovic, Jalžić, Prevorčnik &amp; Sket, 2012</td>
<td>Sb</td>
<td>e</td>
<td>PN</td>
<td>7</td>
<td>da</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>THERMOSBAENACEA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Tethysbaena halophila (S. Karaman, 1953)</td>
<td>Sb</td>
<td>E</td>
<td>It</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MYRIAPODA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>CHILOPODA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Eupolybothrus leostygis (Verhoeff, 1899)</td>
<td>Tb</td>
<td>E</td>
<td>EN</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>DIPLOPODA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ANTHOGONIDAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Macrochaetosoma troglomontanum Absolon &amp; Lang, 1933</td>
<td>Tb</td>
<td>e</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>CHORDEUMATIDA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Gen?/sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>GLOMERIDELLIDAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Typhloglomeris coeca Verhoeff, 1898</td>
<td>Tb</td>
<td>e</td>
<td>PN</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>JULIDAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Typhloiulus edentulus Attems 1951</td>
<td>Tb</td>
<td>E</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>Typhloiulus psilonotus (Latzel 1884)</td>
<td>Tb</td>
<td>E</td>
<td>PN</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Typhloiulus sp. nov. 1</td>
<td>Tb</td>
<td>DNZ</td>
<td>PN</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Typhloiulus sp. nov. 2</td>
<td>Tb</td>
<td>DNZ</td>
<td>PN</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>PARADOXOSOMATIDAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Gen?/sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>Gen?/sp. 1</td>
<td>Tb?</td>
<td>?</td>
<td>N</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>POLYDESMIDAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>Brachydesmus stygivagus Verhoeff, 1899</td>
<td>Tb</td>
<td>E</td>
<td>PN</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Brachydesmus sp.</td>
<td>Tb</td>
<td>e</td>
<td>PN</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>POLYXENIDAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Polyxenus sp. cf. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>PN</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>POLYZONIDAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>Taksonomska kategorija</td>
<td>EKO</td>
<td>END</td>
<td>LT</td>
<td>JN</td>
<td>IUCN</td>
<td>IST</td>
<td>SO</td>
<td>VO</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>171</td>
<td>Gen?/sp. 1</td>
<td>Tb</td>
<td>?</td>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRICHOPOLYDESMIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Gen?/sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENTOGNATHA, COLLEMBOLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENТОMOBRYIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Verhoeffiella media (Loksa &amp; Bogojević, 1967)</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td>PN</td>
<td>8</td>
<td>da</td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>Verhoeffiella longicornis (Absolon 1900)</td>
<td>Tb</td>
<td>E</td>
<td>PN</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Pseudosinella sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HYPOGASTRURIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>Typhlogastrura topali (Loksa &amp; Bogojević, 1967)</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td>EN</td>
<td>P</td>
<td>1</td>
<td>da</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Acheroxynylla sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEELIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>Neelus sp. cf. nov. / cf. klisurensis Kovač &amp; Papač, 2010</td>
<td>Tb</td>
<td>DNZ</td>
<td>PN</td>
<td>2</td>
<td>da</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ONCOPODURIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>Oncopodura jugoslavica Absolon &amp; Kseneman 1932</td>
<td>Tb</td>
<td>e</td>
<td>PN</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ONYCHIURIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Archaphorura sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>P</td>
<td>1</td>
<td>da</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Onychiuroides sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>N</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>Allonychiurus cf. Vandelii (Cassagnau 1960)</td>
<td>Tb</td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMINTHURIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>Disparrhopalites sp.</td>
<td>Tb</td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIPLOURA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>Plusiocampa (Stygiocampa) remyi Conde, 1947</td>
<td>Tb</td>
<td>E</td>
<td>DD</td>
<td>PN</td>
<td>9</td>
<td>da</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Plusiocampa (Stygiocampa) sp. nov.</td>
<td>Tb</td>
<td>E</td>
<td>jn</td>
<td>PN</td>
<td>4</td>
<td>da</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INSECTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COLEOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARABIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>Minosaphaenops croaticus Lohaj et Jalžić, 2009</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>Taksonomska kategorija</td>
<td>EKO</td>
<td>END</td>
<td>LT</td>
<td>JN</td>
<td>IUCN</td>
<td>IST</td>
<td>SO</td>
<td>VO</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>187</td>
<td>Neotrechus amabilis (Schaufuss, 1863)</td>
<td>Tb</td>
<td>e</td>
<td>lt</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Neotrechus dalmatinus (L. Müller, 1861)</td>
<td>Tb</td>
<td>e</td>
<td>PN</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>Neotrechus hilfi (Reitter 1903) ssp.</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Neotrechus ottonis Reitter, 1905</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td>N</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Neotrechus paganetti winneguthi Scheibel, 1937</td>
<td>Tb</td>
<td>E</td>
<td>lt</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>Neotrechus saturalis otiosus (Obenberger, 1917)</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td>PN</td>
<td>13</td>
<td>da</td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>Neotrechus saturalis (Schaufuss 1864) ssp.</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td>PN</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Speluncarius (Speluncarius) anophthalmus Reitter 1886</td>
<td>Tb</td>
<td>E</td>
<td></td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**LEIODIDAE**

| RB | | EKO | END | LT | JN | IUCN | IST | SO | VO |
|----| |-----|-----|----|----|------|-----|----|----|
| 195| Anthroherpon apfelbecki apfelbecki (Müller, 1910) | Tb | E | lt | PN | 3 | da |
| 196| Anthroherpon apfelbecki sculpifrons Winkler, 1925 | Tb | E | | N | 1 |
| 197| Anthroherpon apfelbecki (Müller, 1910) ssp. | Tb | E | | N | 2 |
| 198| Anthroherpon matulici (Reitter, 1903) | Tb | E | jn | | P | 1 |
| 199| Bathyscidius tristiculus fallaciosus (G. Müller, 1910) | Tb | E | lt | P | 3 | da |
| 200| Bathyscidius tristiculus (Apfelbeck 1905) ssp. | Tb | E | | PN | 4 |
| 201| Blattochaeta marianii kusijanoviči Polak et Jalžić, 2009 | Tb | E | lt | P | 1 |
| 202| Hadesia vasiceki J. Müller 1911 | Tb | E | | PN | 1 |
| 203| Laneyriella sp. | Tb | e | | PN | 3 |
| 204| Pholeuonella erbertii epidaurica Z. Karaman, 1953 | Tb | E | | PN | 2 |
| 205| Pholeuonella erbertii (Schaufuss 1862) ssp. | Tb | E | | PN | 3 |
| 206| Pholeuonella sp. | Tb | ? | | N | 4 |
| 207| Speonesiotes (Kulzeria) sp. | Tb | ? | | N | 2 |
| 208| Speonesiotes (Speonesiotes) narentinus latitarsis (Apfelbeck, 1919) | Tb | E | lt | PN | 26 | da |
| 209| Speonesiotes (Speonesiotes) narentinus (Miller 1861) ssp. | Tb | E | | PN | 12 |

**PSELAPHINAE**

<p>| RB | | EKO | END | LT | JN | IUCN | IST | SO | VO |
|----| |-----|-----|----|----|------|-----|----|----|
| 210| Novakia sp. nov. | Tb | E | | PN | 8 |
| 211| Seracamaurops cadmei Pavičević &amp; Ozimec, 2013 | Tb | E | lt | PN | 2 |
| 212| Troglamaurops ganglbaueri (Winkler, 1925) | Tb | E | | N | 1 |</p>
<table>
<thead>
<tr>
<th>RB</th>
<th>Taksonomska kategorija</th>
<th>EKO</th>
<th>END</th>
<th>LT</th>
<th>JN</th>
<th>IUCN</th>
<th>IST</th>
<th>SO</th>
<th>VO</th>
</tr>
</thead>
<tbody>
<tr>
<td>213</td>
<td><em>Troglamaurops scheibeli</em> (G. Müller, 1944)</td>
<td>Tb</td>
<td>DNZ</td>
<td>it</td>
<td>CR</td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td><em>Troglamaurops</em> sp. nov.</td>
<td>Tb</td>
<td>DNZ</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td><em>Tychobythinus neumanni</em> (Müller, 1909)</td>
<td>Tb</td>
<td>DNZ</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>Nov. gen., nov. sp.</td>
<td>Tb</td>
<td>LN</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td><strong>SCYDMENIDAE</strong></td>
<td>Tb</td>
<td>DNZ</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td><strong>CHORDATA</strong></td>
<td>Tb</td>
<td>DNZ</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td><strong>AMPHIBIA</strong></td>
<td>Tb</td>
<td>DNZ</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td><em>Proteus anguinus</em> Laurenti 1768</td>
<td>Sb</td>
<td>LN</td>
<td>e</td>
<td></td>
<td>VU</td>
<td>PN</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
4.4 Analiza istraženosti podzemne bioraznolikosti speleoloških objekata DNŽ

4.4.1 Pregled dosadašnjih istraživanja


1931b). Početak 20. stoljeća u južnoj Dalmaciji kao kustos Muzeja u Sarajevu, gdje je dobio mjesto
nakon službe u Ludbregu Victor Apfelbeck istražuje kornjaše. Tijekom 30-ih godina 20. stoljeća, češki
biolozi Joseph Kratochvil i František Miller počeli su sustavno istraživati špiljsku faunu pauka
Dalmacije, a R. Frankenberger i V. Balthasar kopnene jednakonožne rakove. Austrijanac Leo
Weirather u razdoblju od 1908.-1938. sakuplja špiljsku faunu u oko 500 špilja i jama, a mnoge od njih
nalaze se na području Dubrovnika. Uz njih, prvenstveno faunu kornjaša, sakupljaju brojni znanstvenici:
G. Paganetti-Hummler, F. Porez, H. Krauss, K. Penecke, O. Wettstein, Leinweber, J. Staudacher, C.
Mayer, H. Krekich-Strassoldo, A. Schatzmayr, M. Grabowski, E. Dombrowski, J. Klimesch, J. Roubal,
F. Bluhweiss, A. Hoffman, G. Messa, F. Heikertinger, P. Czerny, A. Winkler, J. Matcha, F. Netolizky,
F. Neumann, E. A Remy i drugi.

U drugoj polovici 20. stoljeća, nakon Drugog svjetskog rata, specijalistička biospeleološka istraživanja
se intenziviraju. Na području Dubrovnika sve faunističke skupine špiljske faune sakupljaju E. Pretner
iz Postojne, a prvenstveno faunu Coleoptera (kornjaša), te Franjo Nikolić iz Dubrovnika, prvenstveno
faunu pauka (Araneae). Špiljsku faunu grinja (Acari) u nekiliko špilja na području Dubrovnika

U razdoblju od 1962. do 1967. uz potporu Slovenske akademije znanosti i umjetnosti (SAZU) špiljsku
faunu Dinarida sustavno istražuju Slovenski biospeleolozi: J. Bole, B. Drovenik, J. Hadži, J. Matjašić,
špiljsku faunu Dinarida sustavno sakupljaju Nizozemci P. i Christa Deeleman-Rheinhold, specialista za faunu pauka (Araneae). U gotovo 30 godina dugom istraživanju područja Dinarida ukupno je
istraživano oko 400 špilja. Osim opisa brojnih novih svojstava Špiljskih pauka Deeleman-Rheinhold
opisuje svojte iz nekoliko drugih skupina (e.g. Isopoda). Arahnološka istraživanja do 1977. godine
provode i Česi J. Kratochvil i F. Miller. Rezultat je monografija špiljskih pauka porodice Dysderidae i

U razdoblju od 1962. do 1967. uz potporu Slovenske akademije znanosti i umjetnosti (SAZU) špiljsku
faunu Dinarida sustavno istražuju Slovenski biospeleolozi: J. Bole, B. Drovenik, J. Hadži, J. Matjašić,
špiljsku faunu Dinarida sustavno sakupljaju Nizozemci P. i Christa Deeleman-Rheinhold, specialista za faunu pauka (Araneae). U gotovo 30 godina dugom istraživanju područja Dinarida ukupno je
istraživano oko 400 špilja. Osim opisa brojnih novih svojstava Špiljskih pauka Deeleman-Rheinhold
opisuje svojte iz nekoliko drugih skupina (e.g. Isopoda). Arahnološka istraživanja do 1977. godine
provode i Česi J. Kratochvil i F. Miller. Rezultat je monografija špiljskih pauka porodice Dysderidae i

Konačno, djelatnici Hrvatskoga prirodoslovnog muzeja (HPM) sustavno speleološki i biospeleološki
speleološkim organizacijama, sustavno obavljaju biospeleološka istraživanja na svim područjima
Hrvatske pa tako i na području Dubrovačko-neretvanske županije. Uz brojna pojedinačna istraživanja
provedena su sustavna biospeleološka istraživanja otoka Korčule (od 1991. godine), otoka Mljeta
Tablica 4.4.1. Popis špiljskih svojti (Tb; Sb sustava Vilina špilja – izvor Omble.

Legenda: Taksonomske definicije:
- **cf.** – najvjerojatnije, ali ne sigurno utvrđena svojta
- **Gen. nov.** – novi, još neopisani rod za znanost
- **sp. nov.** - nova, još neopisana vrsta za znanost
- **Gen/sp** – svojta nije taksonomski određena samo do razine roda
- **sp.** – svojta determinirana samo do razine roda

**Endemizam:**
- **E** – endem južno-dinarske biogeografske regije
- **e** – endem Dinarida
- **?** – trenutno nemoguće definirati endemizam

**Ekološka klasifikacija:**
- **Tb** – troglobiont
- **Sb** – stigobiont

**Izvor podatka:**
- **L** – literatura (navedena referenca)
- **Z** – zbirka HBSD (sakupljeno prethodnim istraživanjima HBSD-a)
- **R** – istraživanja HBSD-a u razdoblju 19.03-18.06. 2012.

---

**REGNUM FUNGI**

**ASCOMYCOTA**
1. *Hyphomycetes* sp.  
2. *Isaria* sp.  

**ZYGOMYCOTA**
3. *Syncephalis* sp. nov.  

---

**REGNUM ANIMALIA**

**TURBELLARIA**

**NEMERTEA**

**NEMATODA**
6. Gen. sp.

**OLIGOCHAETA**
7. Gen. sp.

---

**POLYCHAETA**
8. *Marifugia* *cavatica* Absolon & Hrabe 1930  

**BIVALVIA**
9. *Congeria* *kusceri* Bole 1962  

**GASTROPODA**

**HYDROBIIDAE**
10. *Iglica* *absoloni* (A.J. Wagner 1914)  
11. *Iglica* *bagliviaeformis* Schutt 1970  
12. *Belgrandia* *torifera* Schutt 1961  
13. *Plagigeyeria* *robusta robusta* Schutt 1959  
14. *Plagigeyeria* *robusta asculpta* Schutt 1972  
15. *Plagigeyeria* *nitida angelovi* Schutt 1972  
16. *Lanzaia* *vjetrenicae vjetrenicae* Kuščer 1933  
17. *Lanzaia* *vjetrenicae kusceri* Karman 1954  
18. *Horatia* *knorri* Schutt 1961  
19. *Saxurinator* *brandti* Schutt 1968  
20. *Orientalina* *troglobia* (Bole 1961)  
21. *Hauffenia* *plana* Bole 1961  
22. *Hauffenia* *edlaueri* (Schutt 1961)  

**CARYCHIIDAE**
23. *Zospeum* *amoenum* (Frauenfeld 1856)  

**CYCLOPHORIDAE**
24. *Pholeoteras euthrix* Sturany 1904  

ARACHNIDA

PALPIGRADI


ARANEOIDEAE

27. *Stalagitia hercegovinensis* (Nosek, 1905)  
28. *Histopona dubia* (Absolon & Kratochvil, 1933)  
29. *Histopona krivosijana* (Kratochvil, 1935)  
30. *Sulcia* sp. nov.?  

PSEUDOSCORPIONES

31. Gen. nov. sp. nov.  
32. *Chthonius* (*Globbochthonius*) *caligatus* Beier, 1938  
33. *Roncus* sp. nov.

OPILIONES

34. *Travunia anophtalma* Absolon & Kratochvil, 1927

ACARI

35. *Spelaeothrombium caecum* Willmann, 1940  
36. *Belba gratiosa* Willmann, 1940  
37. *Rhaedia* sp.

MALACOSTRACA

AMPHIPODA

38. *Niphargus kolombatovici* Karaman, S., 1950  
40. *Niphargus trullipes* Sket, 1958  
41. *Niphargus vjetrenicensis* Karaman, S., 1932  
42. *Niphargus balcanicus* (Absolon, 1927)  
43. *Niphargus hercegovinensis* Karaman, S., 1950  
44. *Typhlogammarus mrazeki* (Schaferna, 1906)  
45. *Hadzia fragilis* Karaman, S., 1932

ISOPODA

ASELLOTA

46. *Proasellus anophtalmus rhausinus* (Remy, 1941)  
47. *Microcharon hercegovinensis* (S. Karaman, 1959)

FLABELLIFERA


ONISCIDEA

50. *Cyphonethes hercegovinensis* (Verhoeff, 1900)  
51. *Cyphoniscellus hercegovinensis* (Verhoeff, 1900)  
52. Gen. nov. sp. nov.

DECAPODA

53. *Troglocaris* (*Troglocaridella*) *hercegovinensis* (Babić, 1922)  
54. *Troglocaris* (*Spelaecaris*) *pretneri* (Matjašić, 1956)  
55. *Troglocaris* (*Troglocaris*) *anophtalmus* ssp. (Kollar, 1848)

ENTOGNATHA

COLLEMBOLA

HYPOGASTRURIDAE


ONYCHIURIDAE

57. *Archaphorura* sp. nov.

ENTOMOBRYIDAE

58. *Verhoeffiella media* (Loksa & Bogojević, 1967)

NEELIDAE

**DIPLURA**  
60. *Plusiocampa remy* Conde, 1947  
61. *Plusiocampa* sp. nov.

**INSECTA**  
**COLEOPTERA**  
**CARABIDAE**  
62. *Neotrechus suturalis otiosus* (Obenberger, 1917)

**LEIODIDAE**  
64. *Speonesiotes narentinus latitarsis* (Apfelbeck, 1919)  

**PSELAPHINAE**  

**VERTEBRATA**  
**AMPHIBIA**  
67. *Proteus anguinus* Laurenti 1768

Ovim sustavnim istraživanjima sustav Vilina špilja – izvor Omble prednjači po bioraznolikosti s tri troglobiontna vrste gljiva te 64 vrste faune, od čega 35 vodene stigobiontna vrste i 31 kopnene, troglobiontna vrste, odnosno ukupno 67 pravih špiljskih svojstava.

Provedbom terenskih biospeleoloških istraživanja u okviru projekta *Istraživanje špiljskih staništa i izvorišnih područja šireg dubrovačkog područja s ciljem vrednovanja bioraznolikosti i ocjena prihvatljivosti izgradnje hidroenergetskih objekata, u razdoblju 13. 08. do 19. 11. 2014. godine, a financiranim također od strane Hrvatske elektroprivrede d.d., ostvaren je od sada najopsežnije i najsustavnije biospeleološko istraživanja ne samo na području Dubrovačko-neretvanske županije, već i na području cijele Hrvatske, ali i cijelokupnih Dinarida. Istraživano je područje kopnenog dijela Dubrovačko-neretvanske županije: Delte Neretve, Dubrovačkog primorja, šireg područja grada Dubrovnika, Župe dubrovačke i Konavala sa Sniježnicom te kao komparacija svega dva objekta na području poluotoka Pelješca.

Istraživački tim od 20 istraživača, od čega se tim za kopneni staništa sastojao od 14 istraživača, a istraživački tim za vodena staništa od 6 istraživača, proveo je na terenu ukupno 37 dana u okviru kojih je u 180 istraživačkih posjeta istraživano 115 speleoloških objekata. U okviru istraživanja sakupljen je veliki broj primjeraka špiljske faune, preko 10000 primjeraka u okviru 1782 uzorka. Utvrđeni su predstavnici čak 40 taksonomskih skupina od čega gotovo sve faunističke skupine od njih 21 ciljane. Ukupno je od strane domaćih i stranih specijalista obrađeno oko 1500 uzoraka, osnovno 85-90% sakupljenog materijala. Determinirano je 2318 uzoraka s ukupno preko 10 000 primjeraka. Rezultati ovih specijalističkih determinacija predstavljeni su u poglavlju 4.4.2., dok su rezultati istraživanja ciljanih vrsta predstavljeni u poglavlju 4.4.3.
4.4.2 Analiza bioraznolikosti špiljskih organizama istraživanog područja

Istraživanjem je za projektno područje kopnenog dijela Dubrovačko-neretvanske županije utvrđeno čak 64 vrsta špiljskih mikobiota (glijva) te 218 svojti špiljske faune, odnosno ukupno 282 troglobionata i stigobionata, što definitivno dokazuje iznimnu bioraznolikost špiljskih staništa ovog područja. Usporedba prisutnosti ova dva carstva (Regnum) pokazuje da je udjel špiljskih vrsta otprilike 25% glijva i 75% životinja. Pregled utvrđenih špiljskih svojti na istraživanom području prema dva utvrđena carstva predstavljen je u Tablici 4.4.2. i na Slici 4.4.1.

Tablica 4.4.2. Pregled utvrđenih špiljskih svojti prema dva carstva.

<table>
<thead>
<tr>
<th>Carstvo</th>
<th>Broj špiljskih svojti</th>
<th>Udjel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungi</td>
<td>64</td>
<td>22,70</td>
</tr>
<tr>
<td>Animalia</td>
<td>218</td>
<td>77,30</td>
</tr>
<tr>
<td>Ukupno</td>
<td>282</td>
<td>100</td>
</tr>
</tbody>
</table>

Slika 4.4.1. Pregled utvrđenih špiljskih svojti prema dva carstva.

Analiza utvrđenih špiljskih gljiva prema višim taksonomskim kategorijama ukazuje na apsolutnu dominaciju gljiva utrobnjača (Ascomycota), neznatan udjel zigomikota (Zygomycota), nekoliko vrsta koje se zbog nedostatka spolnih elemenata nisu mogle odrediti (Mycelia sterilia) te potpuni nedostatak špiljskih gljiva iz skupine stapčarki (Basidiomycota). Podjela špiljskih gljiva predstavljena je u Tablici 4.4.3. i na Slici 4.4.2.
Tablica 4.4.3. Pregled utvrđenih špiljskih svojti gljiva prema višim taksonomskim kategorijama.

<table>
<thead>
<tr>
<th>Taksonomska skupina gljiva</th>
<th>Broj špiljskih svojti</th>
<th>Udjel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascomycota</td>
<td>57</td>
<td>87,69</td>
</tr>
<tr>
<td>Zygomycota</td>
<td>3</td>
<td>4,62</td>
</tr>
<tr>
<td>Fungi (mycelia sterilia)</td>
<td>5</td>
<td>7,69</td>
</tr>
<tr>
<td>Ukupno</td>
<td>65</td>
<td>100</td>
</tr>
</tbody>
</table>

Slika 4.4.2. Pregled utvrđenih svojti špiljskih gljiva prema višim taksonomskim kategorijama.

Analiza špiljske faune pokazuje apsolutnu dominaciju beskralješnjaka (Avertebrata), jer je od 218 vrsta utvrđena samo jedna vrsta kralježnjaka (Vertebrata), i inače jedini špiljski kralježnjak Dinarida, čovječja ribica (*Proteus anguinus*).

Unutar skupine beskralježnjaka prisutno je 13 viših taksonomskih grupa. Analiza ukazuje na apsolutnu dominaciju člankonožaca (Arthropoda) sa 181 svojtom, u odnosu na 36 vrsta svih drugih beskralješnjaka. U okviru člankonožaca dominira skupina paučnjaka (Arachnida) sa 75 vrsta i udjelom od gotovo 35%. Slijede rakovi sa 46 vrsta i udjelom preko 21%, pa kukci (Insecta) s gotovo 15% te mekušci s preko 11%. Ostale skupine beskralješnjaka su daleko manje zastupljene. Podjela člankonožaca u odnosu na druge beskralješnjake prikazana je u Tablici 4.4.4. i na Slici 4.4.3., a svih špiljskih beskralježnjaka u Tablici 4.4.5. i na Slici 4.4.4.
Tablica 4.4.4. Podjela špiljskih beskralježnjaka na člankonošce i ostale.

<table>
<thead>
<tr>
<th>Taksonomska skupina</th>
<th>Broj svojti</th>
<th>Udjel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Člankonošci (Arthropoda)</td>
<td>181</td>
<td>82,56</td>
</tr>
<tr>
<td>Ostali</td>
<td>36</td>
<td>17,43</td>
</tr>
<tr>
<td><strong>Ukupno</strong></td>
<td><strong>217</strong></td>
<td><strong>100</strong></td>
</tr>
</tbody>
</table>

Slika 4.4.3. Podjela špiljskih beskralježnjaka na člankonošce i ostale.

Tablica 4.4.5. Podjela špiljskih beskralježnjaka prema višim taksonomskim kategorijama.

<table>
<thead>
<tr>
<th>RB</th>
<th>Taksonomska skupina</th>
<th>Broj svojti</th>
<th>Udjel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Turbellaria</td>
<td>3</td>
<td>1,38</td>
</tr>
<tr>
<td>2</td>
<td>Nemertea</td>
<td>1</td>
<td>0,46</td>
</tr>
<tr>
<td>3</td>
<td>Nematoda</td>
<td>1</td>
<td>0,46</td>
</tr>
<tr>
<td>4</td>
<td>Oligochaeta</td>
<td>4</td>
<td>1,84</td>
</tr>
<tr>
<td>5</td>
<td>Polychaeta</td>
<td>1</td>
<td>0,46</td>
</tr>
<tr>
<td>6</td>
<td>Hirudinea</td>
<td>1</td>
<td>0,46</td>
</tr>
<tr>
<td>7</td>
<td>Mollusca</td>
<td>25</td>
<td>11,52</td>
</tr>
<tr>
<td>8</td>
<td>Arachnida</td>
<td>75</td>
<td>34,56</td>
</tr>
<tr>
<td>9</td>
<td>Crustacea</td>
<td>46</td>
<td>21,20</td>
</tr>
<tr>
<td>10</td>
<td>Myriapoda</td>
<td>15</td>
<td>6,91</td>
</tr>
<tr>
<td>11</td>
<td>Entognatha</td>
<td>13</td>
<td>5,99</td>
</tr>
<tr>
<td>13</td>
<td>Insecta</td>
<td>32</td>
<td>14,75</td>
</tr>
<tr>
<td><strong>SUMA</strong></td>
<td><strong>217</strong></td>
<td><strong>100</strong></td>
<td></td>
</tr>
</tbody>
</table>
4.4.3 Analiza ostvarenih nalaza ciljanih špiljskih vrsta

Od ciljane 63 vrste špiljske faune te 3 vrste gljiva, odnosno 67 ciljanih vrsta utvrđenih prethodno za špiljski sustav Vilina špilja-izvor Omble, kroz istraživanje u okviru ovoga Projekta je u drugim speleološkim objektima utvrđeno 49 vrsta, odnosno oko 75% ciljanih vrsta. Od ovih 49 vrsta mnoge su nađene u velikom broju drugih objekata, njih 30 je nađeno u 1-4 druga speleološka objekta (oko 45%), 12 vrsta je utvrđeno u 5-9 speleoloških objekata (oko 18%), dok je 7 vrsta nađeno u 10 i više speleoloških objekata. Pregled ostalih nalazišta predstavljen je u Tablici 4.4.6..

Tablica 4.4.6. Broj ostalih nalazišta (BON) ciljanih špiljskih svojti.

<table>
<thead>
<tr>
<th>Broj speleoloških objekata</th>
<th>0</th>
<th>1-4</th>
<th>5-9</th>
<th>10 i više</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td>BON</td>
<td>17</td>
<td>30</td>
<td>12</td>
<td>7</td>
<td>66</td>
</tr>
<tr>
<td>Udjel (%)</td>
<td>25,75</td>
<td>45,45</td>
<td>18,18</td>
<td>10,61</td>
<td>100</td>
</tr>
</tbody>
</table>

Od 17 vrsta koje nisu nađene u drugim speleološkim objektima, 4 vrste su taksonomski upitno određene i vjerojatno ne obitavaju u špiljskom sustavu Vilina špilja-izvor Omble. To su: *Histopona krivosijana* (Kratochvil, 1935); *Sulcia* sp. nov.; *Niphargus hercegovinensis* Karaman, S., 1950; *Sphaeromides virei* cf. *montenegrina* Sket, 1957. Stoga je najvjerojatniji broj svojti koje nisu nađene u drugim speleološkim objektima 13 (19,7%), odnosno nađeno je preko 80% traženih ciljanih svojti.

U Tablici 4.4.7. predstavljene su upitno određene svojte i vjerojatne svojte i njihov broj ostalih nalazišta u okviru Dubrovačko-neretvanske županije. Pregled ciljanih vrsta s navedenim brojem ostalih nalazišta (BON) predstavljen je u Tablici 4.4.8.
### Tablica 4.4.7. Pregled upitno određenih ciljanih svojti.

<table>
<thead>
<tr>
<th>RB</th>
<th>Upitno određena svojta</th>
<th>Vjerojatna svojta</th>
<th>BON za vjerojatnu svojtu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Histopona krivosijana (Kratochvil, 1935)</td>
<td>Histopona dabia (Absolon &amp; Kratochvil, 1932)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Sulcia sp. nov.</td>
<td>Sulcia occulta Kratochvil, 1938</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Niphargus hercegovinensis Karaman, S., 1950</td>
<td>Niphargus kolombatovici S. Karaman, 1950</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Sphaeromides virei cf. montenegrina Sket, 1957</td>
<td>Sphaeromides virei virei Brian 1923</td>
<td>3</td>
</tr>
<tr>
<td>Uk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Uk | 4                                                                 | 4                                                      | 20                       |

### Tablica 4.4.8. Pregled nalaza ciljanih špiljskih svojti Sustava Vilina špilja – izvor Omble (sa zvjezdicom su označene upitno determinirane svojte).

<table>
<thead>
<tr>
<th>RB</th>
<th>Taksonomska kategorija</th>
<th>Ekol. kateg.</th>
<th>LT</th>
<th>IUCN</th>
<th>BON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gljive (REGNUM FUNGI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hyphomycetes sp.</td>
<td>Tb</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Isaria sp.</td>
<td>Tb?</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZYGOMYCOTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Syncephalis sp. nov.?</td>
<td>Tb?</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Životinje (REGNUM ANIMALIA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dendrocoelum cf. kenki de Beauchamp 1937</td>
<td>Sb</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Prostoma cf. hercegovinense Tarman, 1961</td>
<td>Sb</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gen. sp.?</td>
<td>Sb</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Gen. sp.?</td>
<td>Sb</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OLIGOCHAETA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Marifugia cavatica Absolon &amp; Hrabe 1930</td>
<td>Sb</td>
<td></td>
<td>DD</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Congeria kusceri Bole 1962</td>
<td>Sb</td>
<td></td>
<td>CR</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Iglica absoloni (A.J. Wagner 1914)</td>
<td>Sb</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Iglica bagliviaeformis Schutt 1970</td>
<td>Sb</td>
<td>lt</td>
<td>EN</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Belgrandia torifera Schutt 1961</td>
<td>Sb</td>
<td></td>
<td>EN</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>Plagigeyeria robusta robusta Schutt 1959</td>
<td>Sb</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Plagigeyeria robusta asculpta Schutt 1972</td>
<td>Sb</td>
<td>lt</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Plagigeyeria nitida angelovi Schutt 1972</td>
<td>Sb</td>
<td>lt</td>
<td>CR</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Lanzaia vjetrenicae vjetrenicae Kuščer 1933</td>
<td>Sb</td>
<td></td>
<td>CR</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>Lanzaia vjetrenicae kusceri Karaman 1954</td>
<td>Sb</td>
<td>lt</td>
<td>CR</td>
<td>5</td>
</tr>
<tr>
<td>RB</td>
<td>Taksonomska kategorija</td>
<td>Ekol. kateg.</td>
<td>LT</td>
<td>IUCN</td>
<td>BON</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>--------------</td>
<td>----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>15</td>
<td>Horatia knorri Schutt 1961</td>
<td>Sb</td>
<td>lt</td>
<td>CR</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Saxurinator brandti Schutt 1968</td>
<td>Sb</td>
<td></td>
<td>EN</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>Orientalina troglobia (Bole 1961)</td>
<td>Sb</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>Hauffenia plana Bole 1961</td>
<td>Sb</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>Hauffenia edlaueri (Schutt 1961)</td>
<td>Sb</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>Zospeum amoenum (Frauenfeld 1856)</td>
<td>Tb</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>21</td>
<td>Pholeoteras euthrix Sturany 1904</td>
<td>Tb</td>
<td></td>
<td>VU</td>
<td>20</td>
</tr>
<tr>
<td>22</td>
<td>Eukoenenia cf. reymi Conde, 1974</td>
<td>Tb</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Eukoenenia preneri Conde, 1977</td>
<td>Tb</td>
<td>lt</td>
<td>CR</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>Stalagia hercegovinensis (Nosek, 1905)</td>
<td>Tb</td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>25</td>
<td>Histopona dubia (Absolon &amp; Kratochvil, 1933)</td>
<td>Tb</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>26</td>
<td>Histopona krivosijana (Kratochvil, 1935)*</td>
<td>Tb</td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>27</td>
<td>Sulcia sp.nov.*</td>
<td>Tb</td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>28</td>
<td>Chthonius caligatus Beier, 1938</td>
<td>Tb</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>Fam. Chthoniidae, Gen. nov. sp. nov.</td>
<td>Tb</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>Roncus sp. nov.</td>
<td>Tb</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>Travania anophthalma Absolon &amp; Kratochvil, 1927</td>
<td>Tb</td>
<td></td>
<td>EN</td>
<td>7</td>
</tr>
<tr>
<td>32</td>
<td>Spelaeothrombium caecum Willmann, 1940</td>
<td>Tb</td>
<td></td>
<td>EN</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td>Metabelbella gratiosa (Willmann, 1940)</td>
<td>Tb</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>Traegaardhia dalmatina (Willmann 1939)</td>
<td>Tb</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td>Niphargus kolombatovici S. Karaman, 1950</td>
<td>Sb</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>36</td>
<td>Niphargus trullipes Sket, 1958</td>
<td>Sb</td>
<td></td>
<td>CR</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>Niphargus vjetrenicensis S. Karaman, 1932</td>
<td>Sb</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>Niphargus balcanicus (Absolon, 1927)</td>
<td>Sb</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>Niphargus hercegovinensis Karaman, S., 1950*</td>
<td>Sb</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>Niphargus salonitanaus Karaman, S., 1950</td>
<td>Sb</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>Typhlogammarus mrazeki (Schaferna, 1906)</td>
<td>Sb</td>
<td></td>
<td>EN</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>Hadzia fragilis Karaman, S. Karaman, 1932</td>
<td>Sb</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>43</td>
<td>Proasellus anophthalmus rhausinus (Remy, 1941)</td>
<td>Sb</td>
<td></td>
<td>EN</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>Microcharon hercegovinensis (S. Karaman, 1959)</td>
<td>Sb</td>
<td></td>
<td>CR</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>Monolistra (Pseudomonolistra) hercegovinensis ornata S. Karaman, 1953</td>
<td>Sb</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RB</td>
<td>Taksonomska kategorija</td>
<td>Ekol. kateg.</td>
<td>LT</td>
<td>IUCN</td>
<td>BON</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------------------------------------------------------------</td>
<td>--------------</td>
<td>----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>46</td>
<td>Sphaeromides virei cf. montenegrina Sket, 1957*</td>
<td>Sb</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>Cyphonethes herzegovinensis (Verhoeff, 1900)</td>
<td>Tb</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Cyphoniscellus herzegovinensis (Verhoeff, 1900)</td>
<td>Tb</td>
<td></td>
<td>VU</td>
<td>10</td>
</tr>
<tr>
<td>49</td>
<td>Gen. nov. sp. nov.?</td>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>ONISCIDEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Troglocaris (Troglocaridella) hercegovinensis (Babić, 1922)</td>
<td>Sb</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>Troglocaris (Spelaecarid) pretneri (Matjašić, 1956)</td>
<td>Sb</td>
<td></td>
<td>EN</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>Troglocaris (Troglocarid) anophthalmus periadriatica Jugović, Jalžić, Prevorčnik &amp; Sket, 2012</td>
<td>Sb</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>ENTOGNATHA, COLLEMBOLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HYPOGASTURIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Typhlogastrura topali (Lokska &amp; Bogojević, 1967)</td>
<td>Tb</td>
<td>lt</td>
<td>EN</td>
<td>0</td>
</tr>
<tr>
<td>54</td>
<td>Archaphorura sp. nov.</td>
<td>Tb</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ONYCHIURIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Verhoeffiella media (Lokska &amp; Bogojević, 1967)</td>
<td>Tb</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>ENTOMOBRYIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Neelus cf. sp. nov. / cf. klisurensis Kovač &amp; Papač, 2010</td>
<td>Tb</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NEELIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Plasilocampa remy Conde, 1947</td>
<td>Tb</td>
<td></td>
<td>DD</td>
<td>8</td>
</tr>
<tr>
<td>58</td>
<td>Plasilocampa sp. nov.</td>
<td>Tb</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INSECTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COLEOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARABIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Neotrechus saturalis otiosus (Obenberger, 1917)</td>
<td>Tb</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>LEIODIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Bathyscidius risticulus fallaciosus (J. [G.] Müller, 1910)</td>
<td>Tb</td>
<td>lt</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>61</td>
<td>Anthroherpon apfelbecki apfelbecki J. [G.] Müller, 1910</td>
<td>Tb</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PSELAPHINAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Tychobythinus neumanni (Müller, 1909)</td>
<td>Tb</td>
<td>lt</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>VERTEBRATA, AMPHIBIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Proteus anguinus Laurenti 1768</td>
<td>Sb</td>
<td></td>
<td>VU</td>
<td>1</td>
</tr>
</tbody>
</table>
4.4.4 Mikobiota (gljive)

4.4.4.1 Globalna i regionalna istraženost gljiva krškog podzemlja

Danas je poznato oko 100.000 vrsta gljiva, no kako su one jedna od najslabije istraženih skupina organizama, procjenjuje se da ih zapravo ima najmanje oko 1.500.000 (Hawksworth 2001 i Blackwell 2011). Iz toga je vidljiva iznimno niska globalna istraženost birozaznolikosti gljiva što ih čini najslabije istraženim skupinama živih organizama (Heywood i sur. 1995; Mueller i Schmit 2007). Hrvatska se, zahvaljujući primarno svojem mediteranskom položaju, svrstava među vrstama najbogatija europska područja (Blondel i sur. 2010), a istovremeno i među najslabije istražene krajeve Europe. Procjenjuje se da se u Hrvatskoj danas živi najmanje oko 20.000 vrsta već opisanih gljiva, od čega je do danas utvrđeno oko 5.500 (Radović i sur. 2009). Tako se posvećenije globalna neistraženost birozaznolikosti gljiva ogleda i u niskoj razini istraženosti gljiva u Hrvatskoj (Tkalčec i sur. 2008). Međutim, pomak u broju novo zabilježenih vrsta gljiva (više od 3.000) na području Hrvatske, koji je ostvaren u samo 10 godina istraživanja (usp. Radović i sur. 1999), pokazuje koliko su važna te meljna biološka istraživanja.

S druge strane, usporedna slika istraženosti gljiva krškog podzemlja Hrvatske zapravo je bitno drugačija. Prema cjelovitom pregledu koji daje Vanderwolf i sur. (2013), Hrvatska spada u bolje istražene dijelove svijeta već samo ako promatramo objavljene radove i druge javno dostupne podatke. Kada tome pridodamo veliku količinu neobjavljenih podataka iz interne baze podataka autor, te materijala prikupljenih u znanstvenoj zbirci Hrvatskoga mikološkog društva (CNF), registriranoj u Svjetskoj bazi Index Herbariorum, možemo smatrati područje Hrvatskog krškog podzemlja, a pogotovo njenog Dinarsko-jadranskog dijela, iznimno dobro istraženim. Razumljivo je da o razini istraženosti podzemnih organizama odgovarajuće skupine ovisi i njihova upotrebljivost u evaluaciji kvalitete staništa. Zbog toga ćemo ovdje navesti samo nekoliko podataka koji potkrepljuju sliku o prilično dobroj istraženosti raznolikosti gljiva krškog podzemlja koja se može mjeriti s najbolje istraženim državama/područjima na svijetu (zapadna i srednja Europa, Rumunjska te istok SAD).


117

Slika 4.4.5. Svjetska istraženost gljiva i micetozoa u špiljama, prema broju objavljenih radova (Vanderwolf i sur. 2013).

4.4.4.2 Raznolikost i životne strategije gljiva krškog podzemlja

Gljive imaju različite hranidbene strategije; kao saprotrofi razgrađuju mrtvu organsku tvar; kao paraziti hrane se organskim tvarima iz tijela živih organizama; a kao simbionti ulaze u mikorizni odnos s korijenovim sustavom biljaka ili pak u zajednicu s algama ili cijanobakterijama tvoreći lišaje. Iznimno je značajna uloga gljiva u odvijanju ekoloških procesa u kopnenim ekosustavima, a posebno u šumskim. Razgradnja lignina (tvari koja, uz celulozu, dominira u ostacima drvenastih ali i mnogih drugih biljnih vrsta) isključivo je zadaća gljiva pa je njihova uloga u razgradnji mrtvih drvnih ostataka nezamjenjiva. Kako u nadzemnim staništima kopnene bi (uključujući i pedosferu), tako i u krškom podzemlju, gljive imaju bitnu i nezamjenjivu ulogu. Suvremeni svjetski pregled ekologije i bioraznolikosti gljiva u špiljama daju Vanderwolf i sur. (2013). U dubljim podzemnim prostorima našega krša s trajnim nedostatkom svjetla (elektro-magnetsko zračenje presudno je za odvijanje brojnih biosintetskih reakcija), trajno niskom dobavljenosti hranjivih tvari, ujednačenom, razmjenom temperaturom te, najčešće, visokom vlagom zraka i supstrata dominiraju ascomiceti (Ascomycota) - gljive iz, vrstama i životnim strategijama, najbogatijeg odjeljka carstva gljiva. Vrste iz sljedećih taksonomsko-ekoloških skupina dominiraju u mračnoj zoni supradinarskog, dinarskog i jadranskog krškog područja: (a) vrste reda Laboulbeniales komenzali su na kukcima; (b) vrste redova Eurotiales i Microascales - najčešće su saprotrofini, fimikolni organizmi; (c) vrste reda Onygenales koji mogu biti saprotrofi na izmetima, te koštanim, rožnatim i hitinskim životinjskim ostacima ali i paraziti (npr. na kralješnjacima); (d) vrste redova Helotiales, Thelebolales i Sordariales koji saprotrofi su na
izmetima odn. biljnim ostacima; i (e) vrste reda Hypocreales koji su važni patogeni špiljskih člankonožaca (troglofila i troglobionata). Druga velika skupina gljiva - bazidiomiceti (Basidiomycota) znatno je manje zastupljena, osobito ako promatramo specijalizirane gljive krškog podzemlja. Među bazidiomicetima pretežu razlagači biljnih ostataka (najviše rodovi Coprinus i Hemimycena) i to u svim dijelovima špiljskih objekata, dok su ektomikorizne vrste ograničene samo uz ulazne dijelove u području dokle dopire rizosfera ektomikoriznog drveća i grmlja. Malobrojni zigomiceti (Zygomycota) najviše su u krškom podzemlju zastupljeni na životinjskim izmetima, ali značajnu ulogu imaju i neke hitinolitičke vrste i mikoparaziti. Čini se da se određeni broj vrsta gljiva Europe za vrijeme oledbi povukao u špiljska staništa, koja su ostala pošteđena od zaleđivanja. Određene vrste su se posve prilagodile na tamošnje uvjete te se nakon prilagodbe i povlačenja leda u okolišu izvan krškog podzemlja više ne mogu ponovno proširiti u svoja nekadašnja područja (Matočec i sur. 2014). Među takvim gljivama najalako vrste koje su zbog toga osjetljive, čije bi populacije mogle biti dovedene i do rizika od nestajanja ukoliko bi ta njihova izolirana i osjetljiva staništa nepovratno nestala npr. uslijed različitih antropogenih utjecaja (usp. Elliott 2000). Tako je vrsta Cordyceps riverae, naš stanovnik dinarskog podzemlja, strogo zaštićena (Tkalčec i sur. 2008).


4.4.4.3 Gljive sustava Vilina špilja - izvor Omble

U ovom se potpoglavlju za ilustraciju špiljske mikobiote predstavljaju vrste iz sustava Vilina špilja – izvor Omble, uzorkovane tijekom biospeleoloških istraživanja u tom sustavu koja je proveo HBSD (2012), kada su u mračnoj zoni uzorkovane i gljive. Uzorkovano je osam nalaza a zabilježeno devet nalaza i vrsta gljiva. Svi su nalazi znanstveno dokumentirani makrofotografijama in situ (R. Ozimec) te makro- i mikro fotografijama te laboratorijskim obradama (s alfanumeričkim podacima i crtežima) ex situ (N. Matočec). Cjelokupan uzorkovani materijal pohranjen je u znanstvenoj zbirci Hrvatskoga mikološkog društva (CNF).
Legenda: narančasto – ranija istraživanja (2011/2012); žuto – istraživanja u 2014.; Tx = trogloksen; Tf = troglofil; Tb = troglobiont; AQ = vrsta oligotrofnih, čistih slatkih voda; e = endem Dinarida; E = endem južnodinarske biogeografske regije; nr = nije rijetka; R = rijetka; ER = ekstremno rijetka; # = osim u ovom sustavu, široko rasprostranjena u drugim špiljama i izvan špilja; spi = osim u ovom sustavu, široko rasprostranjena u drugim špiljama; *= osim u ovom sustavu poznata sa svega 2 lokaliteta van špilja; ** = osim u ovom sustavu, do danas poznata samo iz špilja DNŽ; *** = do danas poznata samo iz sustava Vilinska špilja-izvor Omble; ? = status moguć; ! = status vrlo vjerojatan.

<table>
<thead>
<tr>
<th>Takson</th>
<th>Ekol. status</th>
<th>End.</th>
<th>Frekv./Raspr.</th>
<th>Red</th>
<th>Odjeljak</th>
<th>Datum nalaza</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Gymnoascus uncinatus</em> Eidam</td>
<td>Tx</td>
<td>-</td>
<td>nr/#</td>
<td>Onygenales</td>
<td>Ascomycota</td>
<td>06.05.2012.</td>
</tr>
<tr>
<td><em>Myxotrichum cancellatum</em> W. Phillips</td>
<td>Tx</td>
<td>-</td>
<td>nr/#</td>
<td>Onygenales</td>
<td>Ascomycota</td>
<td>06.05.2012.</td>
</tr>
<tr>
<td><em>Myxotrichum deflexum</em> Berk.</td>
<td>Tf</td>
<td>-</td>
<td>nr/spi</td>
<td>Onygenales</td>
<td>Ascomycota</td>
<td>01.11.2011.</td>
</tr>
<tr>
<td><em>Hymenoscyphus imberbis</em> (Bull.) Dennis</td>
<td>Tx</td>
<td>-</td>
<td>česta/#</td>
<td>Helotiales</td>
<td>Ascomycota</td>
<td>19.03.2012.</td>
</tr>
<tr>
<td><em>Ombrophila</em> Fr. sp. nov.</td>
<td>Tb!</td>
<td>E</td>
<td>ER/***</td>
<td>Helotiales</td>
<td>Ascomycota</td>
<td>19.03.2012.</td>
</tr>
<tr>
<td><em>Hyphomycetes</em> sp.</td>
<td>Tb</td>
<td>e</td>
<td>R?/***</td>
<td>Incertae sedis</td>
<td>Zygomycoeta</td>
<td>06.05.2012.</td>
</tr>
<tr>
<td><em>Syncephalis</em> Tiegh.&amp;G. Le Monn. sp. nov.</td>
<td>Tb</td>
<td>E</td>
<td>R?/***</td>
<td>Zoopagales</td>
<td>Zygomycoeta</td>
<td>06.05.2012.</td>
</tr>
<tr>
<td><em>Penicillium</em> Link spec. nov.</td>
<td>Tb</td>
<td>E</td>
<td>česta/**</td>
<td>Eurotiales</td>
<td>Ascomycota</td>
<td>14.11.2014.</td>
</tr>
</tbody>
</table>

Od ukupno devet zabilježenih vrsta u sustavu Vilina špilja-izvor Omble, njih četiri se mogu pripisati nekoj od već postojećih, objavljenih vrsta (taksonomska determinacija odnosno identifikacija), dok je pet neidentificiranih na razini vrste, a nakon pregleda i usporedbi tih nalaza s cjelovitim svjetskom literaturnom bazom koji je autor za pripadne taksonomske skupine gljiva uspio pribaviti (Tab. 1: narančasto polje) one su detaljno karakterizirane kako bi se mogle prepoznati i u budućim istraživanjima. Tek je uspoređen s neobjavljenim bazama autora (Matočec i Kušan 1987-2014) i nekoliko njegovih kolega iz nekoliko zemalja Europe (npr. Baral i Marson 2010) i izvan nje, a koje pokrivaju tisuće vrsta predmetnih skupina, kao i detaljnom analizom pomoću cjelovitih ili kompiliranih identifikacijskih ključeva te u nekim slučajevima i de novo izrađenih Svjetskih identifikacijskih ključeva, postalo izvjesno da je riječ o novim, još neobjavljenim vrstama za znanost. U svim tim slučajevima, osim u jednome, bilo je moguće nalazima pripisati taksonomsku pripadnost na razini roda.

Iz rezultata dosadašnjih istraživanja sustava Viline špilje-izvora Omble vidljivo je da je taj veliki speleološki objekt bogat rijetkim i/ili usko rasprostranjenim vrstama gljiva (Tablica 4.4.9.) od kojih su neke gotovo sigurno specijalizirani špiljski organizmi dok druge žive i izvan špilja. Kako bi se signalizirana visoka ekološka vrijednost ovog speleološkog objekta bolje sagledala i stavila u kontekst okolnog biogeografskog područja (uže – južnodinarsko, šire – dinarsko te široko alpsko-dinarsko područje i Europa), provedena su naknadna, vrlo intenzivna biospeleološka istraživanja na području...
Dubrovačko-neretvanske županije tijekom 2014., koja je istraživanjima špiljske mikobiote obuhvatila 60 speleoloških objekata iz kojih je zabilježeno 511 nalaza (od čega ih je uzorkovano 322). Oni čine 150 karakteriziranih vrsta (28 trenutno identificiranih do razine vrste).

Izuzev koprofilne vrste *Penicillium* sp1 koja se pokazala jednom od najčešćih vrsta u speleološkim objektima Dubrovačko-neretvanske županije – ali koja nije zabilježena u ranijim biospelološkim istraživanjima na području Hrvatske i susjednih država, te vrsta *Gymnoascus* sp1 i *Pseudogymnoascus* sp1 (također zabilježene u nekoliko speleoloških objekata, ali sami na području Dubrovačko-neretvanske županije) – sve ostale vrste gljiva iz sustava Vilin špilja – izvor Omble nisu pronađene ni u jednom drugom speleološkom objektu Dubrovačko-neretvanske županije, ali ni šire. S druge strane, čak pedesetak svojih gljiva prikupljenih u recentnim istraživanjima, a koje tek čekaju detaljnu taksonomsku obradu, nisu ranije pronađene u špiljskom sustavu Vilina špilja – izvor Omble, što zajedno govori istovremeno o brojnosti i slaboj istraženosti mikobiote.

U nastavku se predstavljaju najzanimljivije svojte iz Vilina špilja – izvor Omble sustava, od kojih su neke vjerojatno troglobiontske, iako kod gljiva (za razliku od faune) nije lako prosuditi radi li se o vrsti koja naseljava samo špilje ili o onoj koja može nastaviti i staništa izvan krškog podzemlja (pri čemu također može ekološki ranjiva), pogotovo kada se radi o rijetkim vrstama kod kojih neznatan broj postojećih nalaza ne dopušta generalizaciju u vezi ekološkog tipa.

4.4.4.3.1 *Ombrophila* sp. nov.

**Klasifikacija/nomenklatura:**
odjeljak Ascomycota Caval.-Sm., Biological Reviews Cambridge 73: 247 (1998) [MB#90031]
razred Leotiomyctetes O.E. Erikss. & Winka, Myconet 1: 7 (1997) [MB#501487]
red Helotiales Nannf. ex Korf & Lizon, Mycotaxon 75: 501 (2000) [MB#90751]
porodica Helotiaceae Rehm, Rabenhorst’s Kryptogamen-Flora, Pilze - Ascomyceten 1(3): 647 (1886) [MB#80845]
rod *Ombrophila* Fr., Summa vegetabilium Scandinaviae 2: 357 (1849) [MB#3563]


Najsličnija (vjerojatno i najsrodnija) vrsta *O. violacea* Fr. od koje se ova špiljska vrsta jasno razlikuje po nekoliko bitnih karaktera u himenijskim elementima (ornamentacija askospora, manja spornost askusa, glavičasto proširene parafize) te prema ekologiji i anatomiji plodišta, široko je rasprostranjena u potocima i uz njih, na brežuljkastom – brdovitom kontinentalnom području Europe (izvan špilja). Predmetna je vrsta pronađena u hidrološki aktivnom kanalu mračne zone sustava Omla-Vilina špilja.
uz završni sifon u trećoj etaži koja se periodički poplavljuje, kao saprotrof na zasedanim ostacima trulih listova tijesno nataloženih na trajno natopljenim drvnim ostacima. Sustav Vilinska špilja-izvor Omble predstavlja za sada jedini poznati lokalitet. U njemu gljiva može razvijati cjelokupan životni ciklus dokle postoji dostatan pritok supstrata (akumulati listinca s talogom sedre). S obzirom na svoju visoku ekološku specijalizaciju za slatkovodna staništa i tip supstrata, ova bi vrsta mogla imati visok status ugroženosti poput drugih gljiva sa sličnom ekologijom, kao kod blisko srodne vrste O. rivulorum. S obzirom da ova vrsta spada u jednu od najbolje proučenih i najviše istraživanih skupina gljiva u Hrvatskoj, teško je vjerovati da bi izmakla pažnji u dosadašnjim istraživanjima slatkovodnih i vlažnih staništa kontinentalnom i mediteranskom području Hrvatske. Zbog svega navedenoga ovu vrstu treba za sada smatrati troglobiontom, a najvjerojatnije je i vrlo usko rasprostranjena. U Hrvatskoj živi još jedna neopisana vrsta iz ovog roda koja je gotovo sigurno vrlo usko rasprostranjena (pokupsko-karlovački bazen).

4.4.4.3.2 Gloeotinia sp. nov.

<table>
<thead>
<tr>
<th>Klasifikacija/nomenklatura:</th>
</tr>
</thead>
<tbody>
<tr>
<td>odjeljak Ascomycota Caval.-Sm., Biological Reviews Cambridge 73: 247 (1998) [MB#90031]</td>
</tr>
<tr>
<td>razred Leotiomycetes O.E. Eriks. &amp; Winka, Myconet 1: 7 (1997) [MB#501487]</td>
</tr>
<tr>
<td>red Helotiales Nannf. ex Korf &amp; Lizon, Mycotaxon 75: 501 (2000) [MB#90751]</td>
</tr>
<tr>
<td>porodica Helotiaceae Rehm, Rabenhorst's Kryptogamen-Flora, Pilze - Ascomyceten 1(3): 647 (1886) [MB#80845]</td>
</tr>
</tbody>
</table>


Slika 4.4.8. Gloeotinia spec. nov.: apotecijalno plodište; foto: N. Matočec.

Klasifikacija/nomenklatura:
- razred Sordariomycetes: O.E. Erikss. & Winka, Myconet 1: 10 (1997) [MB#90350]
- red Hypocreales: Lindau, Natürl. Pflanzenfam.: 343 (1897) [MB#90477]
- rod Isaria Pers., Neues Magazin für die Botanik 1: 121 (1794) [MB#8636]


Predmetna vrsta roda *Isaria* je pronađena u malom tunelu koji je probijen do izvorske špilje, a nalazi se neposredno iza izvora Omble. Taj tunel dio je srednje etaže jer periodički ne plavi, a supstrat je povremeno izložen sušenju. Gljive ovoga roda paraziti su različitih člankonožaca čije uspravne sineme od propagula proizvode jedino konidije - nesporno nastale spore. Samo za dvije vrste, koje u potpunosti žive izvan špilja, poznat je teleomorf iz roda *Cordyceps* s.l., pa je ova nesporna gljiva, moguća nova vrsta za znanost najvjerojatnije pravi špiljski organizam koji može cijeli svoj životni ciklus zatvoriti unutar lokaliteta sa staništem u kojemu je pronađen uz uvjet dostatnog priljeva svojeg supstrata na kojem parazitira. Situaciju u kojoj su prvobitno pleomorfne gljive mogle trajno izgubiti
spolnu fazu u dugotrajnim uvjetima izolacije pod rigoroznim ekološkim pritiskom opisuju Matočec i sur. (2014). U posljednje vrijeme otkriveno je da kod široko rasprostranjenih vrsta ovoga roda (I. farinosa i I. fumosorosea), kao i vrsta drugih srodnih rodova (npr. Beauveria i Metarhizium) teško ili nikako ne podnose vodne i/ili temperaturne stresove (Cabanillas i Jones 2009; Borisade i Magan 2014), kao što su naglo isušivanje supstrata ili izloženost temperaturama iznad 37ºC ili ispod 20ºC. Ovo ukazuje na mogućnost da se u sustavu Vilinska špilja-izvor Omble mogla pod posebnim uvjetima (za rod Isaria izuzetno nefavorablimin) razviti posebna vrsta prilagođena na vrlo niske temperature i periodičko sušenje.

4.4.4.3.4 Hyphomycetes spec.

Ova, iznimno neobična gljiva, pronađena na mamcu (pašteta) postavljenom u svrhu faunističkih istraživanja nije u okviru ovog istraživanja mogla biti određena ni do razine roda (npr. prema Seifert i sur. 2011) i svakako predstavlja jedan od najvećih dosadašnjih znanstvenih kurioziteta našeg špiljskog podzemlja (sl. 4.4.10.). Vrlo su neobične jedinstvene dimorfne konidije od kojih jedan tip nosi krupan, specifični žutozeleni tuberkulatni solidni ornament od kojeg potječe i boja čitavih sporodohija. Sporodohije nadalje imaju vrlo neobično građenu stručkoliku bazu kakvu ne nalazimo u literaturi. Nužna su naknadna istraživanja u sklopu kojih bi se uspostavio priručni terenski laboratorij kako bi se u slučaju ponovnog pronalaska ove gljive uzorak mogao obraditi u živom stanju unutar 24-48 h po uzorkovanju. Na taj bi način bilo moguće točno utvrditi tip ontogenetskih procesa, uključujući i konidiosporogenezu in situ te bi se pokušale načiniti čiste kulture kako bi se organizam mogao analizirati u standardnom mikrobiološkom okviru bez čega se makar i preliminarna identifikacija u ovom slučaju ne može provesti. Također, za ovakve uzorke trebalo bi predvidjeti i analizu molekularnim metodama. Ova vrsta predstavlja materijal od iznimno velike taksonomske, ali sudeći po supstratu, također i ekološke važnosti. Gljiva je pronađena u srednjoj etaži, u blizini spoja prema donjoj etaži.

Teško je zamislivano da ovaj organizam (barem u ovom obliku) živi izvan špiljskih staništa, a moguće je da mu je i areal ograničen na mali dio dinarskog krškog podzemlja. Preliminarno je određen kao član taksonomski artificijelne skupine Hyphomycetes. To nije prava taksonomska već morfogenetička kategorija u koju ubrajamo gljive, u pravilu nepoznatog sistematskog položaja koje ne tvore mejspore (spore nastale miješanjem genetičkog materijala) već samo nespolne spore (konidije) ili gljive u posve nesporogenom stanju (mycelia sterilia).
4.4.4.3.5 **Syncephalis** sp. nov.

<table>
<thead>
<tr>
<th>Klasifikacija/nomenklatura:</th>
</tr>
</thead>
<tbody>
<tr>
<td>odljak Zygomycota Moreau, Encyclopédie Mycologique 23: 2035 (1954) [MB#90405]</td>
</tr>
<tr>
<td>red Zoopagomycetes Doweld: 1 (2014) [MB#550358]</td>
</tr>
<tr>
<td>porodica Piptocephalidaceae J. Schröt., Kryptogamen-Flora von Schlesien: 215 (1886) [MB#81178]</td>
</tr>
<tr>
<td>rod Syncephalis Tiegh. &amp; G. Le Monn., Annales des Sciences Naturelles Botanique 17: 372 (1873) [MB#20558]</td>
</tr>
</tbody>
</table>

Slika 4.4.11. Syncephalis spec. nov.: merosporangiji; foto: R. Ozimec.


4.4.5 Fauna

Analiza šipiljske faune predstavljena je po taksonomskom redoslijedu i sastavljena je na osnovi dostupnih podataka iz zbirki, popisa, izvještaja, literaturnih podataka te analizom recentno sakupljenog i determiniranog materijala u okviru ovoga projekta. Obradeni su samo nalazi i svojte šipiljskog (kavernolnog) karaktera, odnosno troglobionti i stigobionti, a svojte prisutne u šipiljskom sustavu Vilina špilja-izvor Omble su detaljnije obrađene.
TURBELLARIA

Prethodnim istraživanjima vodenih staništa sustava Vilina špilja-izvor Omble 2012. godine, po prvi puta je za područje Dubrovačkog primorja utvrđena stigobiontna vrsta virnjaka (Turbelaria, Tricladiida). Sakupljeni primjerak ima izrazita stigobiontna obilježja, potpunu depigmentaciju i anoftalmizam te najvjerojatnije pripada rodu *Dendrocoelum* i vrsti *Dendrocoelum cf. kenki* de Beauchamp 1937 (Slika 4.4.12.). Sličan primjerak nađen je recentnim istraživanjem i u izvoru Ljute Konavoske.

Novijim istraživanjima u okviru ovoga projekta sakupljeno je čak 50-tak primjeraka virnjaka iz 10 speleoloških objekata: Izvor u Mliništu, Močiljska špilja, Špilja Jezero, Špilja za Gromačkom vlakom, Traverza kod Miljković staja, Tunel Mihanici 1, Vištičina jama, Vranja peć i Zmajeva peć. Posebno bogata populacija prisutna je u tunelu Mihanici 1, u kojem se nalazi kaptirani izvor te u Vištičinoj jam, gdje su virnjaci prisutni praktički u svim nakapnicama. U sabranom materijalu prisutni su predstavnici više rodova, a determinirane špiljske vrste su stigobiontna vrsta *Crenobia cf. alpina anophthalma* (Mrazek 1907) (Slika 4.4.13.), opisana i proširena na području Hercegovine te troglobonta vrsta *Dugesia cf. absoloni* (Komarek 1919), također opisana iz Hercegovine, a koja je nađena u više speleoloških objekata.


NEMERTEA

Iz skupine vrpčara istraživanjima vodenih staništa sustava Vilina šplja-izvor Omble 2012. godine, po prvi puta za Hrvatsku utvrđen je primjerak jedne stigobiontne vrste.

*Prostoma cf. hercegovinense* Tarman, 1961

Ova vrsta, hercegovački vrpčar, pokazuje izrazita stigobiontna obilježja, potpunu depigmentaciju i anoftalmizam (Slika 4.4.14.). Osim iz špilje Vjetrenice poznata je samo iz Dejanove pećine kod Bileće, koja je danas potopljen akumulacijskim jezerom.

Recentnim istraživanjem vodenih špiljskih staništa, vrpčari nisu nađeni, kako pri biospeleološkom istraživanju i pregledu vodenih staništa, tako ni u postavljenim živolovkama.


NEMATODA

Prethodnim istraživanjima vodenih staništa sustava Vilina šplja-izvor Omble 2012. godine, po prvi puta je za područje Dubrovačkog primorja utvrđena stigobiontna vrsta oblića. Do sada na području južno-dinarske biogeografske regije nije utvrđena ni jedna vrsta, tako da će tek daljnja taksonomska istraživanja pokazati o kojoj se vrsti radi.

Recentnim istraživanjima provedenim 2014. godine predstavnici ove taksonomske skupine nisu utvrđeni u špiljskim staništima, ali je u prethodnom materijalu nađeno nekoliko primjeraka sličnih stigomorfnih karakteristika.

OLIGOCHAETA

Novijim istraživanjima vodenih staništa sustava Vilina šplja-izvor Omble 2012. godine, po prvi puta je za područje Dubrovačkog primorja utvrđena stigobiontna vrsta maločetinaša (Oligochaeta). Do sada
su na području južnodinarske biogeografske regije utvrđene stigobiontna vrste iz više rodova porodice Tubificidae te iz roda Trichodrilus, Achaeta, Rhyacodrilus i Bythonomus, tako da se vjerojatno radi o nekom predstavniku ovih taksonomskih skupina. Zbog slabe istraženosti skupine stigobiontnih maločetinaša moguće je da se radi i o novoj vrsti za znanost, što će pokazati daljnja specijalistička istraživanja.

Recentnim istraživanjima provedenim 2014. godine maločetinaši su utvrđeni u četiri speleološka objekta: Kaverna 781, Vranja peć, Traverza kod Miljković staja i Zmajeva peć, od čega su u prva dva objekta sakupljeni stigobiontni predstavnici porodica Enchytraeidae i Lumbriculidae, a iz Kaverne 781 i stigobiontni predstavnici porodice Tubificidae.

**POLYCHAETA**

Iz skupine mnogočetinaša (Polychaeta), inače pripadnika morske faune, u podzemnim staništima Dubrovačko-neretvanske županije utvrđena je jedna vrsta, i to kako na osnovi nađenih cjevčica, tako i na osnovi živih primjeraka. Kako ova vrsta živi isključivo u protočnim podzemnim vodama, makar periodički može opstati i na suhom, moguće je da njene kolonije obitavaju u hidrološki aktivnim podzemnim vodenim kanalima na području cijele Županije.

*Marifugia cavatica* Absolon & Hrabe 1930


Slika 4.4.15. Subrecentne kolonije stigobiontnog mnogočetinaša *Marifugia* sp. iz Kaverne 781, Konavle (Foto: R. Ozimec).

**BIVALVIA**

Dosadašnjim istraživanjem Dubrovačko-neretvanske županije utvrđena je jedna vrsta stigobiontnog školjkaša.

**Congeria kusceri** Bole 1962


**HIRUDINEA**


*Dina absoloni* Johansson, 1913

Absolonova pijavica (*Dina absoloni*) stigobiontna je vrsta pijavice opisana s područja Hercegovine i naknadno nađena na području Crne Gore i Kosova. U Hrvatskoj je sa sigurnošću utvrđena u Špilji za Gromačkom vlakom kod Dubrovnika (Ozimec, 2005), u kojoj je potvrđena i recentnim istraživanjima, dok je kao novo nalazište utvrđena i za područje masiva Sniježnice (Pliješina jama). To je do 40 mm duga, plosnata pijavica, bez očiju i kožnog pigmenta, mliječno bijela ili ružičasta.

**GASTROPODA**

Fauna špiljskih puževa područja Dubrovačko-neretvanske županije doista je iznimno bogata s čak 26 vrsta, pri čemu je s ovog područja opisana polovica, odnosno 13 vrsta špiljskih puževa, od kojih neke nisu nikada nađene van Županije. Špiljskim puževima bogat je sustav Vilina špilja – Omla izvor s čak 14 svojti, od čega 12 stigobiontnih puževa i 2 troglobiontna, odnosno kopnena puž (Slika 4.4.17.). Gotovo redovito ove su špiljske vrste endemične za područje južno-dinarske biogeografske regije, a često i za faunu Hrvatske.

Recentnim istraživanjem utvrđeni su daljnji, iznimno zanimljivi nalazi špiljskih puževa, pri čemu se po broju vrsta posebno ističe Izvor Ugor s čak devet stigobiontnih puževa, a slijede: Izvor i kaverna Duboka Ljuta, svaki sa šest stigobiontnih vrsta, Izvor Bijeli Vir i Izvor Prud svaki sa pet stigobiontnih vrsta te drugi. *Špilja za Gromačkom* vlakom ističe se s čak četiri vrste troglobiontnih puževa, ali je brojem vrsta najbogatija Vranja peć s čak pet vrsta. Istraživanja špiljskih puževa ovoga područja
svakako treba nastaviti, jer se radi o području s izuzetno velikom bioraznolikosti špiljskih puževa u svjetskim razmjerima.

Slika 4.4.17. Pregled špiljskih puževa sustava Vilina špilja-izvor Omble (prema: Schutt, 2000).
**Iglica absoloni** (A. J. Wagner 1914)

Absolonova iglica je stigobiontni puž iz porodice hidrobida (Hydrobiidae) opisan s područja Trebinja, a nađen svega u nekoliko speleoloških objekata, primjerice u Vjetrenici na Popovom polju. Vrsta je endem južno-dinarske biogeografske regije.


**Iglica bagliviaeformis** Schutt 1970

Omblina iglica je stigobiontni puž koji pripada porodici hidrobida (Hydrobiidae) i opisana je iz špiljskog sustava Vilina špilja-izvor Omble, a naknadno je nađena u nekoliko speleoloških objekata na području Hercegovine, Neretve te Konavala. Vrsta je endem južno-dinarske biogeografske regije, i čini se da je rijetka. Prema Crvenoj knjizi špiljske faune Hrvatske, vrsta je ugrožena (EN).

Recentnim istraživanjima 2014. godine vrsta je nađena u tri speleološka objekta: Izvor Slavljan, Izvor Ugor i Kaverna Duboka Ljuta, dakle na širokom području od Slanog u Dubrovačkom primorju, preko sustava Vilina špilja-izvor Omble i Izvora Slavljan na području grada Dubrovnika sve do Duboke Ljute na granici Župe dubrovačke i Konavala te na području Konavala.

**Belgrandia torifera** Schutt 1961

Dalmatinska belgrandija je stigobiontni puž koji pripada porodici hidrobida (Hydrobiidae). Opisana je iz izvora Stinjevac kod Vrgorca, a naknadno je nađena u sustavu Vilina špilja-izvor Omble. Vrsta je endem srednje i južno-dinarske biogeografske regije, a prema Crvenoj knjizi špiljske faune Hrvatske vrsta je ugrožena (EN).


**Plagigeyeria nitida angelovi** Schutt 1972

Plagigeyeria nitida angelovi je stigobiontni puž koji pripada porodici hidrobida (Hydrobiidae), a opisana je iz izvora Omble. Svojta je endem južno-dinarske biogeografske regije, a prema Crvenoj knjizi špiljske faune Hrvatske vrsta je kritično ugrožena (CR). Nalazi se također i na IUCN Red List u kategoriji nedovoljno poznata (DD).

Recentnim istraživanjima 2014. godine vrsta nije pronađena.
**Plagigeigeria robusta robusta** Schutt 1959

Svojta je stigobiontni puž koji pripada porodici hidrobida (Hydrobiidae), a tipska podvrsta je opisana iz izvora kod Bileće, a kasnije je utvrđena i u sustavu Vilina špilja-izvor Omble. Podvrsta je endem južno-dinarske biogeografske regije.

Recentnim istraživanjima 2014. godine podvrsta nije pronađena.

**Plagigeigeria robusta asculpta** Schutt 1972

Svojta je stigobiontni puž koji pripada porodici hidrobida (Hydrobiidae), a podvrsta je opisana iz izvora kod Mlina na području Dubrovačkog primorja, a kasnije je utvrđena i za sustav Vilina špilja-izvor Omble. Vrsta je endem južno-dinarske biogeografske regije.


**Lanzaia vjetrenicae vjetrenicae** Kuščer 1933

Vjetrenička lanzaja je stigobiontni puž koji pripada porodici hidrobida (Hydrobiidae). Opisana je iz špilje Vjetrenice na Popovom polju, a naknadno je nađena u nekoliko izvora između Podgorice i Metkovića i Podgorice, u Hrvatskoj do recentnih nalaza samo u sustavu Vilina špilja-izvor Omble. Podvrsta je endem južno-dinarske biogeografske regije, a prema Crvenoj knjizi špiljske faune Hrvatske vrsta je kritično ugrožena (CR).


**Lanzaia vjetrenicae kusceri** S. Karaman 1954

Kuščerova lanzaja je stigobiontni puž koji pripada porodici hidrobida (Hydrobiidae) i opisana je iz špiljskog sustava Vilina špilja-izvor Omble. Vrsta je endem južno-dinarske biogeografske regije, a prema Crvenoj knjizi špiljske faune Hrvatske vrsta je kritično ugrožena (CR).


**Lanzaia vjetrenicae latecostata** Schütt, 1968

Ova podvrsta opisana je iz izvora Duboka Ljuta, a recentnim istraživanjima nije nađena čak niti u tipskom nalazištu, niti u obližnjoj kaverni Duboka Ljuta.
**Saxurinator brandti** Schutt 1968

Brandtov brakični puž je stigobiontni puž koji pripada porodici hidrobida (Hydrobiidae) i opisan je s područja Metkovića. Vrsta je kasnije utvrđena u više nalazišta na području između Metkovića i Dubrovnika, pa tako i za sustav Vilina špilja-izvor Omble. Vrsta je endem južno-dinarske biogeografske regije, a prema Crvenoj knjizi špiljske faune Hrvatske vrsta je ugrožena (EN).

Recentnim istraživanjima 2014. godine vrsta je nađena u tri speleološka objekta: Izvor Bijeli Vir, Izvor Ugor i Kaverna Duboka Ljuta, čime je povećan broj nalazišta, ali i proširen areal vrste na istok, sve do kraja Župe dubrovačke.

**Saxurinator labiatus** (Schutt, 1968)

Zatonski brakičar pronađen je samo u malom izvoru kraj mora kod starog mlina u Zatonu na području grada Dubrovnika (Schütt, 1963; Bole i Velkovrh, 1986; Radja, 2001). Vrsta je endem južno-dinarske biogeografske regije, a prema Crvenoj knjizi špiljske faune Hrvatske vrsta je kritično ugrožena (CR).

Recentnim istraživanjima 2014. godine vrsta nije pronađena.

**Saxurinator sketi** (Bole, 1960)

Šipunski brakični pužić je stigobiontna vrsta opisana iz Šipun špilje u Cavtatu. Vrsta je endem južno-dinarske biogeografske regije, a prema Crvenoj knjizi špiljske faune Hrvatske vrsta je ugrožena (EN).

Recentnim istraživanjima 2014. godine vrsta nije pronađena.

**Orientalina troglobia** (Bole 1961)

Špiljska orijentalina je stigobiontni puž koji pripada porodici hidrobida (Hydrobiidae). Opisana je s područja Popovog polja, a kasnije utvrđena za više drugih nalazišta, između ostalih i za sustav Vilina špilja-izvor Omble.

Recentnim istraživanjima 2014. godine vrsta je nađena u tri speleološka objekta: Izvoru Prud, Izvoru Ugor i kaverna Duboka Ljuta, čime su nađena nova nalazišta ove vrste u Hrvatskoj, ali i proširen areal vrste.

**Horatia knorri** Schutt 1961

Omlina horacija je stigobiontni puž koji pripada porodici hidrobida (Hydrobiidae) i opisana je iz sustava Vilina špilja-izvor Omble. Vrsta je endem južno-dinarske biogeografske regije, a prema Crvenoj knjizi špiljske faune Hrvatske vrsta je kritično ugrožena (CR).

Recentnim istraživanjima 2014. godine vrsta je nađena u tri speleološka objekta: Izvoru Prud, Izvoru Ugor i kaverni Duboka Ljuta, čime su utvrđeni daljnji lokaliteti ove vrste, zasad ukupno četiri, a areal vrste je znatno proširen na zapad do Neretve, a na istok do kraja Župe dubrovačke.
**Hauffenia plana** Bole 1961

Ova haufenija je stigobiontna vrsta koja pripada porodici hidrobida (Hydrobiidae). Opisana je s područja Crne Gore i naknadno je nađena na širokom području od Vrgorca preko Bileće sve do Plata, te u sustavu Vilina špilja-izvor Omble.


**Hauffenia edlaueri** (Schutt 1961)

Ova haufenija je stigobiontni puž koji pripada porodici hidrobida (Hydrobiidae). Opisana je s područja Hercegovine i naknadno je nađena u brojnim izvorima na području Neretve i Dalmacije.

Recentnim istraživanjima 2014. godine vrsta je nađena u dva speleološka objekta: Izvoru Bijeli Vir i Romića vrilo, oba na području Neretve.

**Zospeum amoenum** (Frauenfeld 1856)

Glatkousti špiljaš je troglobiontni puž koji pripada porodici patuljastih puževa (Carychiidae) i proširen je u speleološkim objektima duž cijelih Dinarida.

Recentnim istraživanjima 2014. godine vrsta je nađena u šest speleoloških objekata: Gusarska jama, Jezero špilja, Kornjatuša jama, Šolkina jama, Špilja za Gromčakom vlakom i Vranja peć, dakle od Neretve, preko Dubrovačkog primorja sve do Snježnice ponad Konavala.

**Theodoxus subterrelictus** Schütt, 1963

Metkovska praneritina je stigobiontni puž koji pripada porodici Neritidae. Pripadnik je južnodinarske biogeografske regije i stenoendem Hrvatske, Dubrovačko-neretvanske županije i područja Donje Neretve. Vrsta je pronađena u izvorima na južnom rubu Svitavskog Blata kod Metkovića, u blizini Sopot mlina (locus typicus) i u blizini sela Sjeković te u jednom izvoru kod sela Gnušine kod Metkovića (Schütt, 1963; Bole i Velkovrh, 1986; Radja, 2001; Tvrđković i sur., 2004; Mienis, 2005).

Recentnim istraživanjima 2014. godine vrsta nije pronađena.

**Pholeoteras euthrix** Sturany 1904

Špiljski čekinjaš (Slika 4.4.18.) je troglobiontni puž iz porodice kružnoušćanih puževa (Cyclophoridae), relikt tercijarne faune. Opisan je iz Hercegovine, a naknadno nađen u dvadesetak speleoloških objekata, u Hrvatskoj na području Dubrovačkog primorja, poluotoku Pelješcu i otoku Visu. Vrsta je endem južno-dinarske biogeografske regije, iako postoje podaci o postojanju vrste na području Krka u Grčkoj, a prema Crvenoj knjizi špiljske faune Hrvatske vrsta je osjetljiva (VU).

Recentnim istraživanjima 2014. godine vrsta je nađena na velikom broju nalazišta, u čak 19 speleoloških objekata: Aragonka, Banova ljut, Debela ljut, Đurovića špilja, Jama na Kunku, Kuševa peć, Kuna špilja, Močiljska špilja, Sklenica špilja, Špilja iznad crkvice Gospe od Luga, Špilja iznad Omble, Špilja iznad špilje iznad Crkvice Gospe od Luga, Špilja na vrh Toraca, Špilja od Punta, Špilja
u Gaju, Špilja za Gromačkom vlakom, Vija peć, sustav Vilina špilja-izvor Omble i Vranja peć. Ovim istraživanjima gotovo je udvostručen broj nalazišta ove vrste, ali i proširen areal sve do Konavala.

Slika 4.4.18. Špiljski čekinjaš, Špilja od Ponte (Foto: R. Ozimec).

**Spelaeoconcha paganettii polymorpha A. J. Wagner, 1914**

Raznolika špiljašica je troglobiontni puž iz porodice zvrkolikh kopnenih puževa (Vertiginidae)(Slika 4.4.19.). Endem je srednjodinarske i južnodinarske biogeografske regije, BiH i Hrvatske. U Hrvatskoj je proširena na otoku Braču, sinjskom, vrgoračkom i dubrovačkom području (Maassen, 1989), a prema Crvenoj knjizi špiljske faune Hrvatske vrsta je osjetljiva (VU).

Recentnim istraživanjem vrsta je nađena u deset speleoloških objekata: Čekrk jama, Krivača špilja, Šolkina jama, Špilja iznad Kopren dola, Špilja na vrh Toraca, Traverza kod Miljković staja, Velika jama poviše Tornja, Vilenska peć, Vranja peć i Zmajeva peć, čime je podvrsta nepobitno dokazana za područje Neretve i Dubrovačkog primorja.

**Virpazaria pageti kletecki Štamol & Subai, 2012**

Ova troglobiontna podvrsta je pripadnik porodice Strobilopsiidae (Slika 4.4.20.). Endem je Konavala odakle je relativno nedavno opisana iz Vilinske špilje kod Grude, kao jedini pripadnik ovoga roda u Hrvatskoj, proširenog u istočnoj Europi.

Recentnim istraživanjem 2014. godine vrsta je potvrđena u tipskom nalazištu, a utvrđeno je i drugo nalazište, Kuna špilja kod Grude čime je prošireno područje rasprostranjenja ove svojte.

**Aegopis spelaeus A. J. Wagner, 1914**

Trebinjski špiljski pasjak je troglobiontna vrsta (Slika 4.4.21.), pripadnik južnodinarske biogeografske regije, stenoendem BiH i Hrvatske. Veći dio areala je u Popovom polju u istočnoj Hercegovini (BiH), a u Hrvatskoj je nađena 1998. godine u Špilji za Gromačkom vlakom kod Orašca u Dubrovačkom primorju (Štamol, Riedel i Jalžić, 1999). To je, zasad, jedino nalazište ove vrste u Hrvatskoj.


*Slika 4.4.21.* Trebinjski špiljski pasjak, Špilja za Gromačkom vlakom (Foto: R. Ozimec).

**Vitrea zilchi L. Pinter, 1972**

Zilchova kristalka opisana je iz Male špilje između Dubrovnika i Komolca, a navodi se naknadno i za otok Hvar. Prilikom istraživanja 2014. godine utvrđena je u preko 20 speleoloških objekata, od delte Neretve sve do Konavala, čime je potvrđeno široko rasprostiranje ove vrste.

**Tandonia cavicola (Simroth, 1916)**

Špiljska grebenka opisana je iz jame na području srednje Dalmacije, a naknadno je nađena na više lokaliteta na području južne Dalmacije, Hercegovine i Crne Gore. Prilikom istraživanja 2014. godine sa sigurnošću je potvrđena u dvije špilje: Banova ljut i Špilja iznad špilje iznad crkvice Gospe od luga, a upitno je određena i za daljnjih osam objekata, od delte Neretve, preko Dubrovačkog primorja sve do Konavala.
ARACHNIDA

Špiljska fauna paučnjaka je na području Dubrovačko-neretvanske županije najbogatije zastupljena od svih beskralješnjaka, kavernikolnim predstavnicima paučnjačića (Palpigradi), pauka (Araneae), lažištipavaca (Pseudoscorpiones), lažipauka (Opiliones) te grinja (Acar).

Palpigradi (paučnjačići)

Iz skupine ovih reliktnih paučnjačića na području Županije utvrđene su dvije vrste (Slika 4.4.22.), od kojih su obje poznate iz sustava Vilina špilja-izvor Omble.

_Eukoemenia cf. pretneri Conde, 1977_


Recentnim istraživanjima 2014. godine vrsta nije nađena u istraživanim speleološkim objektima.

_Eukoemenia cf. remyi Conde, 1974_


Recentnim istraživanjima 2014. godine vrsta nije nađena u istraživanim speleološkim objektima.

Slika 4.4.22. Eukoemenia sp. (Foto: R. Ozimec).
Araneae (pauči)

Iz skupine pauka (Araneae) za područje Dubrovačko-neretvanske županije utvrđena je 21 troglobiontna svojstva, pri čemu je recentnim istraživanjem 2014. godine utvrđeno više novih troglobiontnih svojstava za znanost.

Stalagodia hercegovinensis (Nosek, 1905)


Recentnim istraživanjima 2014. godine dokazano je široko rasprostranjenje i učestalost vrste, jer je vrsta nađena u čak 43 speleološkim objektima: Aragonka, Banova ljut, Bezdanka, Čekrk jama, Debela ljut, Đurovića špilja, Gusarska jama, Jama na Kunku, Jama na vrh Krčevina, Jama na vrh Vrguda, Jama pod Brk, Jama u Zabiradu, Kaverna 180, Kaverna 183, Kaverna 781, Kornjatuša, Kukova peć, Močiljska špilja, Šipun, Šolkina jama, Špijaturica jama, Špilja iznad crkvice Gospe od Luga, Špilja iznad špilje iznad Crkvice Gospe od Luga, Špilja na vrh Toraca, Špilja na vrh Vrguda, Špilja u Gaju, Špilja za Gromačkom vlakom, Vilina špilja, Vištičina jama, Vranja peć i Zadubravica jama. Vrsta je utvrđena na svim istraživanim područjima Županije, od Neretve sve do Konavala.

Folkia inermis (Absolon et Kratochvil, 1932)

Troblobiontna vrsta, mljetska folkija opisana je sa otoka Mljeta, gdje se redovito nalazi u speleološkim objektima, a jedino nalazište van otoka je Šipun špilja u Cavtatu.

Recentnim istraživanjem 2014. godine nisu nađeni primjeri ove vrste.
Typhlorhode sp. nov.

Vrlo rijedak i atraktivan rod Typhlorhode utvrđen je prije nekoliko godina za Hrvatsku naškom primjerka ovog roda u Đurovića jami u Konavlima. Vrsta je srodna hercegovačkoj vrsti Typhlorhode magnifica, ali se od nje morfološki razlikuje. Nastavna istraživanja utvrditi će njezin točan taksonomski status.

Recentnim istraživanjem 2014. godine nađen je drugi primjerak ove vrste (Slika 4.4.24.) u istom objektu, Đurovića jami.

![Typhlorhode sp. nov.](image)

**Histopona dubia** (Absolon & Kratochvil, 1933)

Špilja Šipun kod Cavtata tipsko je nalaziše ove troglobiontne vrste, a rasprostranjena je u Hrvatskoj i Bosni i Hercegovini (Platnick, 2012). U Hrvatskoj je prisutna samo u okolici grada Dubrovnika i na otoku Šipanu, a u sustavu Vilina špilja-izvor Omble nađena je u ulaznom djelu gornje etaže.

Recentnim istraživanjima 2014. godine vrsta je sigurno nađena u sedam speleoloških objekata: Aragonka, Jama na vrh Krčevina, Kukova peć, Močiljska špilja, Špilja na vrh Toraca, Špilja u Gaju i Špilja za Gromačkom vlaškom, dok su u daljnjih desetak objekata nađeni juvenilni primjerki ovog roda, koji najvjerojatnije pripadaju ovoj vrsti.

**Histopona krivosijana** (Kratochvil, 1935)

Vrsta je opisana iz špilje u blizini Kotora u Crnoj Gori. Osim u nekoliko objekata u okolici Kotora i Nikšića u Crnoj Gori (Kratochvil 1938), prema literaturnom podatku nađena je i u Hrvatskoj, i to samo u sustavu Vilina špilja-izvor Omble (Brignoli, 1980).
Kako ni nakon više sustavno provedenih istraživanja ova vrsta nije recentno nađena postavlja se pitanje da li je ova vrsta uopće prisutna na području Dubrovačko-neretvanske županije ili je taksonomski jako teško razlučiva od prethodne vrste, pa je pogrešno determinirana.

Iz porodice Leptonetidae utvrđene su tri svojte: Barusia sp. nov., Sulcia occulta Kratochvil, 1938 na području Dubrovačkog primorja te Sulcia orientalis (Kulczynski, 1914) na području Neretve.

*Sulcia occulta* Kratochvil, 1938

Ova troglobiontna vrsta iz roda *Sulcia* opisana je s područja istočnog dijela Popovog polja, a pronađena je prethodnim biospeleološkim istraživanjima u više speleoloških objekata na području Dubrovačkog primorja.

Recentnim istraživanjima 2014. godine vrsta je nađena u tri speleološka objekta: Jama na vrh Krčevina, Močiljska špilja i Špilja u Gaju.

Iz porodice Lyniphidae na području Dubrovačko-neretvanske županije, a posebno Konavala, prisutan je veliki broj svojti: Palliduphantes brignolii (Kratochvil, 1978), Palliduphantes sp. nov., Troglolophantes lesserti Kratochvil, 1935, Troglolophantes (Troglolophantes) pugnav Deeleman-Reinhold, 1978, Troglolophantes (Troglolophantes) salax (Kulczynski, 1914), Troglolophantes (Troglodytia) troglodytes (Kulczynski, 1914), Troglolophantes sp. nov., Typhlonyphantes reimoseri reimoseri Kratochvil, 1936 te više novih svojti koje su za sada određene kao: Centromerus sp. nov. i Walckenaria sp. nov., alinjihov točan taksonomski status tek treba utvrditi.

Iz porodica Nesticidae i Pholcidae po prvi su puta za područje Županije nađene troglobiontne svojte Nesticus arenstorffi Kulczynski 1914, Stygopholcus absoloni (Kulczynski 1914) i Stygopholcus skotophilus montenegrinus Kratochvil 1940.

**Pseudoscorpiones** (lažištipavci)

Za špiljsku faunu lažištipavaca (Pseudoscorpiones) Dubrovačko-neretvanske županije do sada je utvrđena 31 špiljska svojta, isključivo iz porodica Chthoniidae i Neobisidae. Među njima su prisutne i za znanost još neopisane svojte koje su potvrđene i recentnim istraživanjima 2014. godine.

Iz porodice Chthoniidae utvrđeno je 14 svojti: Chthonius (Chthonius) absoloni Beier, 1939, Chthonius (Chthonius) croaticus B. Ćurčić & Rada, 2012, Chthonius (Chthonius) exarmatus Beier, 1939, Chthonius (Chthonius) magnificus Beier, 1939, Chthonius (Chthonius) trebinjensis Beier, 1938 (Slika 4.4.25.), Chthonius (Chthonius) sp. nov.1, Chthonius (Chthonius) sp. nov.2, Chthonius (Chthonius) sp. nov.3, Chthonius (Eppiphiocthonius) insularis Beier, 1938, Chthonius (Eppiphiocthonius) sp. nov., Chthonius (Globnochthonius) caligatus Beier, 1939, Chthonius (Globnochthonius) sp. nov., Troglochthonius mirabilis Beier, 1939 i Fam. Chthoniidae, Gen. nov., sp. nov.
Fam. Chthoniidae, Gen. nov., sp. nov.

Iz porodice Chthoniidae prisutan je i najvjerojatnije novi, troglobiontni rod za znanost, u potpunosti prilagođen na špiljska staništa, depigmentiran i bez očiju te izduljenih ekstremiteta. Primjerci ovoga novog roda nađeni su već na više špiljskih nalazišta duž naše obale uz utvrđenih više novih vrsta. Prethodnim istraživanjima vrsta je utvrđena u više speleoloških objekata na području Dubrovačkog primorja.

Recentnim istraživanjima 2014. godine svojta je nađena u daljnja tri speleološka objekta: Kukova peć, Šolkina jama i Vranja peć.

Chthonius (Globbochthonius) caligatus Beier, 1939

Ova troglobiontna vrsta iz porodice Chthoniidae je opisana s područja Hercegovine, a kasnije je utvrđena na nekoliko nalazišta u Hrvatskoj. Vrsta je endemična za južno-dinarsko biogeografsko područje. U Hrvatskoj je prethodnim istraživanjima ova vrsta utvrđena za Močiljsku špilju, Kavernu Duboka Ljuta i Škrabuljicu špilju.

Recentnim istraživanjima 2014. godine ova vrsta je nađena u dva istraživana speleološka objekta: Špilja iznad Kopren dola i Traverza kod Miljković staja.

Iz porodice Neobisidae utvrđeno je daljnjih 17 svojih: Insulocreaaris sp. nov., Neobisium (Blothrus) hadzii Beier, 1939, Neobisium (Blothrus) heros Beier, 1938, Neobisium (Blothrus) hypochthon Beier, 1938, Neobisium (Blothrus) lethaeum superbum Beier, 1939, Neobisium (Blothrus) lethaeum parvum Beier, 1939, Neobisium (Blothrus) lethaeum Beier 1938 ssp.3, Neobisium (Blothrus) occultum Beier, 1939, Neobisium (Blothrus) umbratile Beier, 1939, Neobisium (Blothrus) vachoni Beier, 1939, Neobisium (Blothrus) vjetrenicae Hadzi 1932, Roncus anophthalmus (Ellingsen, 1910), Roncus
narentae Dimitrijević & Rađa, 2008, Roncus ragusae B. Ćurčić, 2012, Roncus sp. nov.1, Roncus sp. nov.2, Roncus sp. nov.3.

**Roncus sp. nov.1**

Rijetka svojta troglobiontnog karaktera najvjerojatnije je nova za znanost. Ova zasad nedefinirana svojta nađena u svega jednom primjerku u gornjim etažama sustava Vilina špilja-izvor Omble, ne uz guano i predator je troglobiontne faune. Ova još neopisana vrsta je endem južno-dinarske biogeografske regije.

Recentnim istraživanjima 2014. godine nove svojte roda *Roncus* su nađene u pet speleoloških objekata: Durovića špilja, Jama pod Brk, Predpeć, Špilja iznad Kopren dola i Šipun..


**OPILIONES (lažipauci)**

Iz skupine lažipauka na istraživanom području Dubrovačko-neretvanske županije utvrđeno je čak deset troglobiontnih vrsta, od kojih je čak šest vrsta opisano s ovoga područja, što ukazuje na iznimnim endemizam ove taksonomske grupe na području županije.

Iz porodice Sironidae utvrđeno je šest špiljskih svojta: Cyphophthalmus kratochvili I. Karaman, 2009, Cyphophthalmus minutus (Kratochvil, 1938), Cyphophthalmus neretvianus I. Karaman, 2009, Cyphophthalmus silhavyi Kratochvil, 1937, Cyphophthalmus cf. sp. nov.1, te Cyphophthalmus cf. sp. nov. 2. Iz porodice Travuniidae prisutne su tri vrste: Abasola troglodytes (Roewer, 1915), *Travunia*

Travunia anophthalma Absolon & Kratochvil, 1927

Hercegovačka travunija je troglobiontna vrsta iz porodice travunija (Travuniidae) (Slika 4.4.27.). Rod je relikt tercijarne, ako ne i predtercijarne faune, endemičan za područje južno-dinarske biogeografske regije. Vrsta je opisana s područja Grebaca u Hercegovini, a naknadno je nađena u Močiljskoj špilji, a potom i na više nalazišta u Dubrovačkom primorju. U Crvenoj knjizi špiljske faune Hrvatske zaštićena je u kategoriji ugrožene vrste (EN). Vrsta je po prvi puta utvrđena za faunusustava Vilina špilja-Izvor Omble prilikom istraživanja 2012. godine.


![Slika 4.4.27. Lažištipauk Travunia anophthalma, Kukova peć (Foto: R. Ozimec).](image)

ACARI (grinje)

Na području Dubrovačko-neretvanske županije utvrđeno je deset troglobiontnih vrsta, od čega su tri vrste opisane s područja Županije.

Iz porodice Belbidae utvrđena je vrsta Metabelbella gratiosa (Willmann, 1940); iz porodice Labidostommatidae vrste Labidostomma longipes Willmann, 1940, Nicoletiella absoloni acuticornis Willmann, 1940 i Nicoletiella absoloni Willmann, 1940 ssp.; porodice Parantennulidae Diplopodophilus antennophoroides Willmann, 1940; porodice Parasitidae Holoparasitus absoloni

148
(Willmann 1940) i *Pergamus epignialis* Willmann, 1940; porodice Rhagidiidae *Traegaardhia dalmatina* (Willmann 1939) te porodice Trombellidae *Spelaeothrombium caecum* Willmann, 1940 i *Nothrotrombidium bulbifera* (Willmann, 1940).

**Spelaeothrombium caecum** Willmann, 1940

Špiljski grudaš je vrlo rijetka troglobiontna vrsta (Slika 4.4.28.) iz porodice Thrombellidae, opisana iz špilje Šipun, a naknadno nađena samo na otoku Mljetu, području Grebaca i u sustavu Vilina špilja-izvor Omble. Vrsta je endem južno-dinarske biogeografske regije. U Crvenoj knjizi špiljske faune Hrvatske zaštićena je u kategoriji ugrožene vrste (EN). Vrsta je utvrđena za faunu špiljskog sustava Omble prilikom prethodnih, ali i recentnih istraživanja 2012. godine.

Recentnim istraživanjima 2014. godine vrsta je nađena i u Močiljskoj špilji, koja je tako uz Šipun i Vilina špilja-izvor Omble sustava treći poznati speleološki objekt u kojem obitava ova vrsta.

**Metabelbella gratiosa** (Willmann, 1940)

Ovaj elegantna i dugonoga troglobiontna grinja iz porodice Belbiidae opisana je iz Špilje šipun, a nalaz u sustavu Vilina špilja-izvor Omble, drugi je za Hrvatsku.

Recentnim istraživanjima 2014. godine bogata populacija ove vrste je nađena u Kaverni 781, koja je tako postala treće poznato nalazište ove vrste.

**Traegaardhia dalmatina** (Willmann 1939)

Iz porodice Rhagidiidae utvrđen je nalaz vrste *Traegaardhia dalmatina* koja je opisana iz speleološkog objekta na području planine Mosor.

Recentnim istraživanjima 2014. godine ova vrsta nađena je u čak pet speleoloških objekata: Glogova jama, Gusarska jama, Jezero, Plješina jama i Vištićina jama.

Slika 4.4.28. Špiljski grudaš, sustav Vilina špilja-izvor Omble (Foto: R. Ozimec).
Malacostraca

AMPHIPODA (rakušci)

Na području Dubrovačko-neretvanske županije utvrđeno je 15 stigobiontnih vrsta rakušaca, od čega su dvije vrste opisane s područja Županije. U donjim, vodenim etažama sustava Vilina špilja-izvor Omble utvrđena jebogata fauna rakušaca od osam stigobiontnih vrsta, od kojih sve vrste dolaze i u Hercegovini, u fauni špilje Vjetrenice. Recentnim istraživanjima utvrđeno je čak 11 vrsta rakušaca. 


Accubogammarus algor jalzici G. Karaman 1988

Stigobiontni rakušac je opisan iz špilje za Gromačkom vlakom, koje mu je do sada bilo jedino nalazište. Recentnim istraživanjima 2014. godine, utvrđeno je drugo nalazište, Plješina jama na Sniježnici, čime je bitno proširen areal podvrste.

Niphargus kolombatovici S. Karaman, 1950

Najčešći rakušac utvrđen dosadašnjim biospeleološkim istraživanjima u sustavu Vilina špilja-izvor Omble predstavnik je porodice podzemnih rakušaca (Niphargidae), stigobiontna vrsta koja opisana iz izvora na području Kaštela kod Splita, te utvrđena u petnaestak nalazišta od Korduna do Neretve. 


Niphargus trullipes Sket, 1958

Lopatasti sljepušac je predstavnik porodice podzemnih rakušaca (Niphargidae), stigobiontna vrsta opisana iz špilje Vjetrenice, koja je za sada poznata s područja Popovog polja u Hercegovini i izvorišta Cetine (Gospodska špilja). Recentnim biospeleološkim istraživanjima utvrđen je za sustav Vilina špilja-izvor Omble tek drugo nalazište ove vrste u Hrvatskoj. U Crvenoj knjizi špiljske faune Hrvatske zaštićena je u kategoriji kritično ugrožene vrste (CR).

Recentnim istraživanjima 2014. godine vrsta nije nađena u istraživanim speleološkim objektima.
**Niphargus vjetrenicensis** S. Karaman, 1932

Vjetrenički sljepušac je predstavnik porodice podzemnih rakušaca (Niphargidae), stigobiontna vrsta opisana iz špilje Vjetrenice, koja je za sada poznata s područja Popovog, Dabarskog i Gackog polja u Hercegovini te sustava Vilina špilja-izvor Omble. Vrsta je endem južno-dinarske biogeografske zone.

Recentnim istraživanjima 2014. godine, vrsta je nađena u jednom speleološkom objektu, Kaverni Duboka Ljuta. Time je utvrđeno drugo nalazište ove vrste na području Hrvatske.

**Niphargus balcanicus** (Absolon, 1927)

Bodljikavi sljepušac je predstavnik porodice podzemnih rakušaca (Niphargidae), stigobiontna vrsta opisana iz špilje Vjetrenice, koja je za sada poznata s područja Popovog, Dabarskog i Fatničkog polja u Hercegovini i područja Bileće te sustava Vilina špilja-izvor Omble. Vrsta je endem južno-dinarske biogeografske zone.

Recentnim istraživanjima 2014. godine, vrsta je nađena u jednom speleološkom objektu, Kaverni Duboka Ljuta. Time je utvrđeno drugo nalazište ove vrste na području Hrvatske.

**Niphargus hercegovinensis** S. Karaman, 1950

Hercegovački sljepušac je predstavnik porodice podzemnih rakušaca (Niphargidae), stigobiontna vrsta opisana i za sada poznata samo s područja Popovog polja u Hercegovini te iz sustava Vilina špilja-izvor Omble. Moguća je zamjena sa srodnom vrstom *N. kolombatovici*.

Recentnim istraživanjima 2014. godine vrsta nije nađena u istraživanim speleološkim objektima i upitna je taksonomska odredba ove vrste za sustav Vilina špilja-izvor Omble, zbog prethodno spomenute mogućnosti zamjene sa morfološki sličnom i srodnom vrstonom *N. kolombatovici*.

**Niphargus salonitanus** S. Karaman, 1950

Solinski sljepušac je predstavnik porodice podzemnih rakušaca (Niphargidae), stigobiontna vrsta opisana iz izvora na području Solina kod Splita. Do sada je nađen u svega nekoliko nalazišta od Splita do špilje Šipun u Cavtatu.


**Typhlogammarus mrazeki** (Schafera, 1906)

*Typhlogammarus mrazeki* je reliktni predstavnik porodice slijepih rakušaca (*Typhlogammaridae*), stigobiontna vrsta opisana iz Crne Gore, a naknadno nađena od Korduna i Like, preko Hercegovine do Crne Gore. Endem je Dinarida, a u Crvenoj knjizi špiljske faune Hrvatske zaštićena je u kategoriji ugrožene vrste (EN).

Recentnim istraživanjima 2014. godine vrsta je nađena u jednom speleološkom objektu, Špilji za Gromačkom vlakom, gdje je već nađena prethodnim istraživanjima.
**Hadzia fragilis** Hadzia fragilis Karaman, 1932

Krhka hadžija je predstavnik porodice hadžida (Hadziidae), stigobiontna vrsta opisana iz špilje Vjetrenice na Popovom polju u Hercegovini, a naknadno utvrđena u brojnim izvorima, ali i anhijalinim špiljama duž obale Vrsta je endem cijele dinarske biogeografske zone.


**ISOPODA (jednakonožni rakovi)**

Iz skupine Isopoda (jednakonožni rakovi) na području Dubrovačko-neretvanske županije utvrđena je čak 21 vrsta. Recentnim istraživanjima utvrđeno je 14 vrsta, a najznačajniji nalaz je nalaz ovog roda, *Njegosiella*, predstavnika faune higropetrika te barem dvije nove vrste troglobiontnih vrsta iz roda *Alpioniscus* i dvije troglomorfne vrste roda *Trichoniscus*.


Porodica Cirolanidae sa stigobiontnim svojtomama: *Sphaeromides virei virei* Brian 1923 i moguće *Sphaeromides virei cf. montenegrina* Sket, 1957.


**Proasellus anopthalmus rhausinus** (Remy, 1941)


Recentnim istraživanjima 2014. godine podvrsta nije nađena u istraživanim speleološkim objektima.

**Microcharon hercegovinensis** (S. Karaman, 1959)

Vrsta je rasprostranjena u južnoj Hercegovini, u okolici Trebinja i Bileće. Primjeri utvrđeni u izvoru Omble (jedino nalazište roda *Microcharon* u Hrvatskoj) nisu detaljno analizirani, te su potrebne morfološke i molekularne analize kako bi se utvrdilo da li su to iste svojte (S. Karaman, 1959; Coineau, 1986; Ozimec *et al.*, 2009). Prethodnim istraživanjima nije potvrđena, a uvrštena je u Crvenu knjigu špiljske faune Hrvatske u kategoriju kritično ugrožene svojte (CR) (Ozimec *et al.*, 2009).

Recentnim istraživanjima 2014. godine podvrsta nije nađena u istraživanim speleološkim objektima.

**Monolistra (Pseudomonolistra) hercegovinensis ornata** S. Karaman, 1953


Np, recentnim istraživanjima 2014. godine, podvrsta je nađena u jednom speleološkom objektu, Kaverni Duboka Ljuta. Time je utvrdeno drugo nalazište ove podvrste na području Hrvatske.

**Sphaeromides virei cf. montenegrina** Sket, 1957


Recentnim istraživanjima 2014. godine vrsta *Sphaeromides virei* je nađena u šest speleoloških objekata na području Neretve: Čekrk jama, Izvor Bijeli Vir, Izvor špilja kod kapelice Sv. Mihovil, 153
Izvor u Mliništu, Jama u Predolcu, Vir kod kapelice Sv. Mihovil. U navedenim speleološkim objektima radi se o podvrsti *Sphaeromides virei virei* (Slika 4.4.30.).

![Slika 4.4.30. Sphaeromides virei virei, Izvor špilja kod kapelice Sv. Mihovila (Foto: R. Ozimec).](image)

**Cyphonethes herzegowinensis** *(Verhoeff, 1900)*

Ova troglobiontna i velika vrsta je rasprostranjena u jugoistočnoj Hercegovini i južnoj Dalmaciji (*Karaman, 1966; Schmalfuss, 2003; Bedek et al., 2011*).

Recentnim istraživanjima 2014. godine potvrđeno je široko rasprostiranje ove vrste koja je nađena u 23 speleološka objekta: Aragonka, Banova ljut, Debela ljut, Gusarska jama, Jama na Kunku, Jama na vrh Vrguda, Jama pod Brk, Jama u Zabiradu, Špilja Jezero, Kaverna Duboka Ljuta, Kukova peć, Močiljska špilja, Špilja na vrh Toraca, Špilja za Gromačkom vlakom, Vranja peć i drugi.

**Cyphoniscellus herzegowinensis** *(Verhoeff, 1900)*

Vrsta *Cyphoniscellus herzegowinensis* je rasprostranjena u jugoistočnoj Hercegovini i južnoj Dalmaciji (okolina Dubrovnika, Konavle i otok Korčula), međutim utvrđena je na relativno malo lokaliteta (*Karaman, 1966; Schmalfuss, 2003; Bedek et al., 2011*). Uvrštena je u Crvenu knjigu špiljske faune Hrvatske u kategoriju osjetljive svojte (VU) (*Ozimec et al., 2009*). Vrsta je utvrđena za faunu špiljskog sustava Omble u 2010. godini i prilikom istraživanja 2012. godine.

Recentnim istraživanjima 2014. godine vrsta je nađena u čak osam speleoloških objekata: Aragonka, Jama kod groblja, Jama na vrh Vrguda, Močiljska špilja, Šipun špilja, Špilja kod Punta, Špilja za Gromačkom vlakom, Zmajeva peć.
Prethodnim istraživanjima sustava Vilina špilja – izvor Omble kao i istraživanjima 2012. godine utvrđen je novi rod (Slika 4.4.32.). U tijeku je taksonomska analiza koja bi trebala utvrditi kojoj porodici pripada (Trichoniscidae ili Styloniscidae). Dosadašnjim istraživanjima je utvrđena samo u špiljskom sustavu Vilina špilja – izvor Omble, u ulaznoj dvorani. Potpuno je depigmentirana i slijepa, izrazito izdužena, te je vjerojatno predstavnik kopnene intersticijske faune.

Recentnim istraživanjima 2014. godine ovaj novi rod i vrsta nije nađen u istraživanim speleološkim objektima.
Na području Dubrovačko-neretvanske županije utvrđene su dvojbeno četiri, ali zasigurno čak tri svojte špiljskih, stigobiontnih deseteronožnih rakova (Decapoda). Tri su utvrđene u špiljskom sustavu Vilina špilja – izvor Omble, što je u svjetskim razmjerima izuzetno rijetko, a recentnim istraživanjima 2014. su potvrđene sve tri, uz nalaz potencijalne četvrte vrste, *Troglocaris (Spelaecaridella) pretneri* (Matjašić, 1956) za koju slijedi genetička analiza, a potvrda će značiti i prvi nalaz ove vrste za Hrvatsku.

**Troglocaris (Troglocaridella) hercegovinensis** (Babić, 1922)

Vrsta je rasprostranjena na nekoliko lokaliteta u južnoj Hercegovini i Obodskoj pećini u blizini Skadarskog jezera u Crnoj Gori (Holthuis, 1986; Sket & Zakšek, 2009), te je za faunu špiljskog sustava Omble utvrđena prilikom istraživanja 2012. godine, što je bio prvi nalaz te svojte za faunu Hrvatske.

Recentnim istraživanjima 2014. godine, vrsta je nađena u jednom speleološkom objektu, Kaverni Duboka Ljuta. Time je utvrđeno i drugo nalazište ove vrste na području Hrvatske.

**Troglocaris (Spelaecaridella) pretneri** (Matjašić, 1956)

Vrsta je rasprostranjena u JI Hercegovini, i u Hrvatskoj, u okolici Drniša i sustavu Vilina špilja – izvor Omble (Holthuis, 1986; Sket & Zakšek, 2009; Ozimec et al., 2009). U Vilinoj špilji je utvrđena u većem broju u svim istraživanim sifonima. Uvrštena je u Crvenu knjigu špiljske faune Hrvatske u kategoriju ugrožene svojte (EN) (Ozimec et al., 2009).

Recentnim istraživanjima 2014. godine, vrsta je nađena u jednom speleološkom objektu, Kaverni Duboka Ljuta. Time je utvrđeno i drugo nalazište ove vrste na području Hrvatske.
Troglocaris (Troglocaris) anophthalmus periadriatica Jugovic, Jatžić, Prevorčnik & Sket, 2012


Slika 4.4.33. Troglocaris (Troglocaris) anophthalmus periadriatica, Izvor špilja kod kapelice Sv. Mihovila (Foto: R. Ozimec).

MYRIAPODA

CHILOPODA

Skupina striga zastupljena je na istraživanom području s barem jednom troglobiontnom vrstom, Eupolybothrus leostygis (Verhoeff, 1899), koja je prethodnim istraživanjima utvrđena za Špilju za Gromačkom vlakom.

DIPLOPODA

Fauna dvojenoga iako siromašna za Sustav Vilina špilja-Izvor Omble bogato je zastupljena na istraživanom području Dubrovačko-neretvanske županije.

Recentnim istraživanjem utvrđeno je 14 vrsta iz devet porodica na istraživanom području Dubrovačko-neretvanske županije. Iz porodice Anthogonidae, vrsta Macrochaetosoma troglobontanum Absolon & Lang, 1933; iz porodice Chordeumatida, neodređen rod i vrsta, Gen?/sp. nov.; iz porodice Glomeridellidae vrsta Typhloglomeris coeca Verhoeff, 1898; iz porodice Julidae, četiri svojte: Typhloiulus edentulus Attems 1951; Typhloiulus psilonotus (Latzel 1884), Typhloiulus...
sp. nov. 1, *Typhloiulus* sp. nov. 2; iz porodice Paradoxosomatidae, dvije neodređene nove troglobionske svojte: Gen?/sp. nov.; iz porodice Polydesmidae svega dvije svojte: *Brachydesmus stygivagus* Verhoeff, 1899 i *Brachydesmus* sp.; iz porodice Polyxenidae *Polyxenus* sp. cf. nov.; te iz dvije porodice Polyzonidae i Trichopolydesmidae dvije troglobionske neodređene svojte (Slika 4.4.34.). Predstoji daljnji opsežan taksonomski posao na ovom iznimno zanimljivom materijalu.

Slika 4.4.34. Troglobionski predstavnik porodice Trichopolydesmidae, potencijalno nova vrsta za znanost, Kaverna 781 (Foto: R. Ozimec).

**SYMPHYLA**
Utvrđene su prethodnim i recentnim istraživanjem, ali još nisu taksonomski obrađene.

**PAUROPODA**
Utvrđene su prethodnim i recentnim istraživanjem, ali još nisu taksonomski obrađene.

**ENTOGNATHA**

**COLEMBOLA**
Typhlogastrura topali (Loksa & Bogojević, 1967)


Recentnim istraživanjem 2014. godine vrsta nije nađena.

Arachaphorura sp. nov.

Ova nova svojta za znanost pripada rodu Arachaphorura i predstavlja prvu troglobiontnu svojtu ovoga roda sa izraženim troglomorfnim karakteristikama. Do sada je pronađena u sustavu Vilina špilja – izvor Omble u srednjoj etaži i u zamki na kraju tunela u jednome od odvojaka zatvorenom žičanom ogradom na kraju kojega je prirodna kaverna. Većina primjeraka pronađena je na površini kamenica, nakapnica i malih jezeraca dok u gornjoj etaži niti u blizini guana nije pronađena. Do danas su poznate svega tri vrste ovoga roda: A. alavensis (Španjolska), A. marcuzzi (Italija) i A. serratotuberculata (široko rasprostranjena u Europi).

Recentnim istraživanjem 2014. godine vrsta nije nađena.
Verhoeffiella media (Loksa & Bogojević, 1967)

Ova vrsta opisana je iz Močiljske špilje i pronađena je u svim dijelovima i etažama sustava Vilina špilja – izvor Omble (Loksa & Bogojević 1967). Ova troglobiontna vrsta pripada rodu Verhoeffiella rasprostranjenom na području srednjih i južnih Dinarida čije vrste nastanjuju isključivo špiljska staništa. Vrste roda Verhoeffiella, vjerojatno V. media, nastanjuju brojne špilje na širem području Dubrovnika međutim zbog lošeg opisa vrsta i nedovoljno sređenih taksonomskih odnosa unutar vrsta ovoga roda prije njegove revizije nije moguće odrediti o kojim se vrstama radi.

Recentnim istraživanjem 2014. godine utvrđeno je sedam daljnjih nalazišta za istraživano područje: tipsko nalazište Močiljska špilja, Glogova jama, Gusarska jama, Jezero, Kaverna 180, Vištičina jama i Vranja peć, čime je proširen areal vrste na cijelo istraživano područje, od delte Neretve sve do Konavala.

Neelus cf. sp. nov.

Sakupljeni primjerci roda Neelus srodnji su troglobiontnoj vrsti N. klisurensis opisanoj iz špilje Velika Klisura, Prokletije, Kosovo (Kovač & Papač 2010). Ova izrazito troglomorfna vrsta pronađena je u sve tri etaže sustava Vilina špilja-izvor Omble, u malom broju primjeraka na površini kamenica i nakapnica. Ova vrsta po prvi puta je utvrđena za faunu Hrvatske u sustavu Vilina špilja – izvor Omble.

Recentnim istraživanjem 2014. godine svojta je utvrđena za Špilju za Gromačkom vlakom te je tako utvrđeno drugo nalazište ove svojte uz sustav Vilina špilja-izvor Omble.

Slika 4.4.36. Verhoeffiella longicornis, Kaverna 781, Konavle (Foto: R. Ozimec).
DIPLURA

Skupina dvorepaca prisutna je na istraživanom području s barem dvije svojte, od kojih je jedna još znanstveno neopisana.

Plusiocampa (Stygiocampa) remy Conde, 1947

Troglobiontni remijev dvorepac (Slika 4.4.37.) opisan je iz Vjetrenice na Popovom polju, a naknadno je nađen u brojnim speleološkim objektima Hercegovine, Crne gore i u Hrvatskoj u okolici Dubrovnika u svim prethodnim biospeleološkim istraživanjima. Vrsta je endem južno-dinarske biogeografske regije. U Crvenoj knjizi špiljske faune Hrvatske navodi se kao ugrožena vrsta u kategoriji nedovoljno poznata (DD).

Recentnim istraživanjima 2014. godine vrsta je nađena u čak devet speleoloških objekata: Bezdanka, Jezero, Kaverna 781, Kornjatuša, Močiljska špilja, Vilina špilja, Vranja peć i Zadubravica jama, dakle na području od Neretve, preko Dubrovačkog primorja do Konavala.

Plusiocampa (Stygiocampa) sp. nov.


Recentnim istraživanjima 2014. godine ova nova vrsta je nađena u tri istraživane speleološka objekta: Močiljska špilja, Špilja iznad Kopren dola i Vranja peć. Sakupljeni primjerci pokazuju morfološku varijabilnost, pa se možda radi i o dvije svojte.

Slika 4.4.37. Plusiocampa (Stygiocampa) remy, Vranja peć (Foto: R. Ozimec).
Fauna špiljskih kornjaša Dubrovačko-neretvanske županije zastupljena je s 32 troglobiontne vrste, od čega je čak 20 vrsta opisano s područja Županije, što dovoljno govori o iznimnoj endemičnosti prisutnih vrsta. Recentnim istraživanjem nađene su daljnje troglobiontne vrste nove za faunu Hrvatske, ali i nove za znanost, posebno iz porodice Staphylinidae, potporodice Pselaphinae.

Porodica Carabidae zastupljena je sa devet svojsti: Minosaphaenops croaticus Lohaj et Jalžić, 2009, Neotrechus amabilis (Schauffuss, 1863), Neotrechus dalmatinus (L. Miller, 1861), Neotrechus hilfi (Reitter 1903) ssp., Neotrechus ottonis Reitter, 1905, Neotrechus paganettii winneguthi Scheibel, 1937, Neotrechus sutherlandi otiosus (Obenberger, 1917), Neotrechus sutherlandi (Schauffuss 1864) ssp. i Speluncarius (Speluncarius) anopthalmus Reitter 1886.

Porodica Leiodidae, zastupa potporodica Leptodirini s 15 svojsti: Anthroherpon apfelbecki apfelbecki (Müller, 1910), Anthroherpon apfelbecki sculptifrons Winkler, 1925, Anthroherpon apfelbecki (Müller, 1910) ssp., Anthroherpon matulici (Reitter, 1903), Bathyscidius tristiculus fallaciosus (G. Müller, 1910), Bathyscidius tristiculus (Apfelbeck 1905) ssp., Blattochaeta marianii kusjanovici Polak et Jalžić, 2009, Hadesia vasiccki J. Müller 1911, Laneyriella sp., Pholeonella erberii epidaurica Z. Karaman, 1953, Pholeonella erberii (Schauffuss 1862) ssp., Pholeonella sp., Speonesiotes (Kulzeria) sp., Speonesiotes (Speonesiotes) narentinus latitarsis (Apfelbeck, 1919), Speonesiotes (Speonesiotes) narentinus (Miller 1861) ssp..

Potporodicu Pselaphinae zastupa sedam svojsti: Novakia sp. nov., Seracamauros cadmei Pavićević & Ozimec, 2013, Troglamauros ganglbaueri (Winkler, 1925), Troglamauros scheibeli (G. Müller, 1944), Troglamauros sp. nov., Tychobythinus neumannii (Müller, 1909) te Nov. gen., nov. sp.; dok potporodicu Scydmeninae predstavlja nova vrsta iz roda Tetramellus.

**Neotrechus sutherlandi otiosus** (Obenberger, 1917)


**Bathyscidius tristiculus fallaciosus** (G. Müller, 1910)

Kornjaš *Bathyscidius tristiculus fallaciosus* je podzemljar, hrani se mrtvom organskom tvari i rasprostranjen je u podzemlju južne Dalmacije i Hercegovine, točnije u širem dubrovačkom zaleđu. Sustav Vilina špilja-izvor Omble tipsko je nalazište (*locus typicus*) opisane podvrste koja je nađena prethodnim biospeleološkim istraživanjima. Velika populacija ovih kornjaša obitava u dijelovima špilje gdje se zadržava kolonija šišmiša.

Recentnim istraživanjima 2014. godine vrsta je nađena je u još dva speleološka objekta: Banova ljut i Vija peć na području Bosanske.

**Speonesiotes narentinus latitarsis** (Apfelbeck, 1919)

Ovaj kornjaš podzemljar (Slika 4.4.38.) je šire rasprostranjen u podzemlju južne Dalmacije i Hercegovine, a za sustav Vilina špilja-Izvor Omble otkriven je kroz istraživanja 2012. godine.

Recentnim istraživanjima 2014. godine podvrsta je sigurno determinirana za čak 26 speleoloških objekata: Aragonka, Banova ljut, Jama na vrh Krčevina, Jama na vrh Vrguda, Jama pod Brk, Jama u Zabiradu, Zadubravica jam, Kornjatuša, Kuna špilja, Šolkinja jam, Špijaturica jam, Špilja 1 u uvali Hodoblja, Špilja na vrh Toraca, Špilja u Gaju, Špilja za Gromačkom vlakom, Vilina špilja, Vištičina jama i Vranja peć te drugi te je tako potvrđeno široko rasprostanjenje ove svojte.

Slika 4.4.38. *Speonesiotes (Speonesiotes) narentinus*, Gusarska jama (Foto: R. Ozimec).
*Anthroherpon apfelbecki apfelbecki* (Müller, 1910)

Podvrsta *Anthroherpon apfelbecki apfelbecki* (Slika 4.4.39.) je opisana iz špilje Vjetrenice u Popovom polju, a obitava u podzemlju šireg dubrovačkog zaleđa. U Hrvatskoj je do sada zabilježen samo u tri speleološka objekta: Močiljskoj špilji, sustavu Vilina špilja-izvor Omble gdje je otkriven istraživanjima 2012. godine i u Špilji za Gromačkom vlakom.


*Anthroherpon apfelbecki sculptifrons* Winkler, 1925

Ova podvrsta proširena je na području Hercegovine.

Recentnim istraživanjima 2014. godine vrsta je nađena u jednom speleološkom objektu, jami Kornjatuši na području Neretve, što je prvi nalaz ove podvrste u Hrvatskoj.


*Tychobythinus neumanni* (Müller, 1909)

Sitna troglobiontna pipalica opisana je iz špilje Šipun kod Cavtata, a naknadno je utvrđena za brojne objekte na području srednje i južne dinarske biogeografske regije čiji je endem. U špiljskom sustavu Omble nađena je samo u staništima Viline špilje, kao predator guanofilne faune.
Recentnim istraživanjima 2014. godine vrsta je nađena u četiri istraživana speleološka objekta: Jama na gomilama, Močiljska špilja, Špilja za Gromačkom vlakom i Vilenska peć. Sveukupno je na istraživanom području stoga poznato šest nalazišta ove vrste.

![Slika 4.4.40. Troglamaurops sp., Vranja peć (Foto: R. Ozimec).](image)

**VERTEBRATA**

**AMPHIBIA**

*Proteus anguinus* Laurenti 1768

Čovječja ribica je endem Dinarida, od tršćanskog krša u Italiji sve do Popovog polja u Hercegovini, ali diskontinuiranog geografskog rasprostranjenja. U Hrvatskoj poznajemo četiri izolirane populacije iz Istre, Like, Srednje Dalmacije i Dubrovačkog područja, koje su utvrđene u više od 70 nalazišta. Jedini je europski troglobiontni kralješnjak bez bliskih srodnika u Europi. Relikt je tercijarne faune čiji je predak živio na dnu plitkih, toplih jezera prije 60 milijuna godina. Globalnom promjenom klime dolazi do smanjenja njegovih staništa, a razvijaju se i novi, prilagođeniji oblici vodozemaca koji ga potiskuju. Najveći je špiljski organizam na svijetu, dužine i preko 30 cm te vršni predator čiji su plijen račići iz roda *Niphargus*, *Sphaeromides*, *Monolistra*, *Troglocaris*, *Spelaeocaris*, kao i ličinke kukaca koje izvana donosi voda, a zabilježeno je i da guta mulj sa dna.

Sustav Vilina špilja – izvor Omble najjužnije je poznato nalazište čovječje ribice u Hrvatskoj. Prvi zapis o postojanju čovječje ribice u Ombl zabilježen je u zbirci Hrvatskog prirodoslovnog muzeja, a publiciran po prvi puta u Katalogu zbirke Zoološkog muzeja za vodozemce i gmazove (Amphibia-Reptilia) (Pavletić, 1964; Rađa, 1980). U Katalogu se navodi zabilješka nepoznatog autora o pojavi čovječje ribice na području Rijeke Dubrovačke: *Podaci bez dokumentarnog materijala – Dubrovačka Rijeka 1919*. Drugi navod za postojanje čovječje ribice u Ombl zabilježili su slovenski speleoronioci prilikom ronjenja kaverne iza izvora Omble, odnosno u jednom od brojnih sifonskih kanala u okviru...

Recentnim istraživanjima 2014. godine u komunikaciji s lokalnim stanovništvom utvrđeni su navodi o pojavu čovječje ribice u čak šest speleoloških objekata na području Neretve: Izvor Prud, Bunar na zemlji Vice Jakića, Bunar na zemlji Mire Volarevića, Izvor na zemlji Grge Jurića, Romića vrilo, Izvor Studenac (Izvor u Stupi), dok je prilikom provedbe istraživanja vrsta uočena u Bunaru na zemlji Vice Jakića u Prudu (Slika 4.4.41.).

Slika 4.4.41. Čovječja ribica u Bunaru na zemlji Vice Jakića u Prudu, 07.12 2014.; foto: B. Jalžić.
Preliminarna procjena bioraznolikosti špiljskih staništa dubrovačkog područja

Podaci prikupljeni u prvoj godini istraživanja na projektu Istraživanje špiljskih staništa i izvorišnih područja s ciljem vrednovanja bioraznolikosti i ocjena prihvatljivosti izgradnje hidroenergetskih objekata jasno pokazuju kako je cijelo područje koje je objekt istraživanja iznimno bogato podzemnom bioraznolikošću. To se moglo pretpostaviti i temeljem rezultata ranijih istraživanja, unatoč tome što je do ovog projekta jedini sustavno istraženi podzemni objekt bio sustav Vilina špilja – izvor Omble (nakon istraživanja HBSD-a 2012.), dok su za druge objekte postojali samo sporadični podaci. Zbog toga ranije nije bilo moguće dati nikakve procjene o:

1) zavisnosti broja pronađenih svojstva od veličine objekta,
2) zavisnosti broja pronađenih svojstva od uloženog istraživačkog napora,
3) prostornoj varijabilnosti podzemne bioraznolikosti na području (posebno osnovom koncentracije bioraznolikosti koji po bogatstvu podzemne faune odudaraju od ostatka okolnog podzemlja) i
4) ukupnom očekivanom broju svojstva na području.

Na temelju do sada prikupljenih rezultata na projektu koji je sustavno obuhvatio šire dubrovačko područje sve je to postalo moguće i izložit će se ukratko u ovom poglavlju u obliku prvih procjena, obzirom na to da će se baza podataka dopunjavati pa će se i obrade podataka ponavljati i aktualizirati, iako se ne trebaju očekivati bitno različiti rezultati od ovdje prezentiranih (zbog reprezentativnosti uzorka u prvoj godini godini istraživanja čiji su rezultati već u visokoj mjeri detektirali postojeće odnose).

Za potrebe obrade podataka rezultati dobiveni ovim istraživanjima dopunjeni su dostupnim podacima iz literature i znanstvenih zbirki. Ti podaci redovno uključuju informacije o prisustvu pojedine svojstva u pojedinom špiljskom objektu, na temelju čega u kompilaciji informacija iz više izvora nastaju liste svih svojstva zabilježenih u tom objektu, čime se dobiva elementarni podatak o bioraznolikosti objekta (broj prisutnih vrsta; bogatstvo vrsta). Osim špiljskih objekata koji su bili predmetom aktualnih istraživanja, u bazu podataka uvršteni su još i podaci o sustavu Vilina špilja–izvor Omble. Za taj su objekt podaci istraživanja postojali još od ranije iz više izvora, od kojih je jedino po sustavnosti komparabilno s istraživanjima na ovom projektu bilo istraživanje koje je proveo HBSD (2012), u sklopu kojega je obavljeno i opsežno pretraživanje i analiza literature, što je rezultiralo jednim od najopsežnijih uvida u ukupnu bioraznolikost nekog podzemnog objekta u Hrvatskoj uopće. U bazi podataka svim je istraživanim objektima pridodana informacija o poznatom volumenu objekta izvedena iz speleoloških nacrta, te informacija o ukupnom istraživačkom naporu (iskazana u čovjek/danima) koji je uložen u istraživanje pojedinog objekta (za sustav Vilina špilja – izvor Omble samo za istraživanje HBSD-a, dok za ranija istraživanja nisu postojali podaci).

Slika 5.1.1. prikazuje odnos između broja svojstva u pojedinom špiljskom objektu i volumena tog objekta. Za izjednačenje je korištena tzv. Arrhenius-ova funkcija oblika:
\[ N = a V^b \]

Gdje je \( N \) broj svojti u objektu, \( V \) njegov ukupni poznati volumen, dok su \( a \) i \( b \) empirijski parametri dobiveni izjednačenjem podataka. Ovaj je elementarni pristup analogan s konceptom „odnosa vrsta i površine“ („species – area relationship“; SAR), uz razliku da se u ovom slučaju kao varijabla koristi volumen speleološkog objekta umjesto nadzemne površine na kojoj su bilježene svojte, najčešće iz neke ciljane taksonomske skupine (za područje Hrvatske usporedi npr. Nikolić i sur. 2008 za vaskularne biljke i Štamol i sur. 2014 za puževe).

Korelacijom volumena objekta i broja svojti pronađenih u njemu objašnjeno je ukupno 35% varijabilnosti u brojnosti taksona među objektima, iz čega se može zaključiti da brojnost svojti u nekom objektu sasvim sigurno zavisi i o drugim čimbenicima, a ne samo o njegovom volumenu pri čemu je logično pretpostaviti da je jedan od bitnih dodatnih faktora uloženi istraživački napor u istraživanje pojedinog objekta.

Slika 5.1.1. Korelacija volumena speleološkog objekta i broja svojti pronađenih u tom objektu na širem dubrovačkom području.

Uvidom u Sliku 5.1.1. može se uočiti da se veliki špiljski sustavi (sustav Vilina špilja–izvor Omble, Špilja za Gromačkom vlakom, Glogova jama, Plješina jama) između sebe znatno razlikuju, što navodi na pomisao npr. da su Glogova jama i Plješina jama, iako znatno veće po volumenu, iz nekog razloga znatno siromašnije po broju svojti od Špilje za Gromačkom vlakom. Isto se tako za sustav Vilina špilja
izvor Omble doima da izrazito odskače po bogatstvu svojih drugih objekata. Međutim, takve interpretacije su sasvim neutemeljene, jer ne uzimaju u obzir istraživački napor koji je uložen u istraživanje nekog objekta da bi se prikupili podaci o organizmima koji u njemu obitavaju i svojstava kojima ti organizmi pripadaju.

Na Slici 5.1.2. prikazana je korelacija omjera broja dana uloženih u istraživanje pojedinog objekta u dubrovačkom području i njegovog volumena (koji govori o jediničnom istraživačkom naporu, odnosno prosječnom naporu koji je uložen u istraživanje jedinice volumena) s jedne strane i omjera broja nalaza špiljskih organizama (neovisno o svojstva) i volumena objekta (koji govori o prosječnom broju nalaza po jedinici volumena koji su prikupljeni na terenu i u konačnici probrani za determinaciju) s druge strane. Kod izračuna druge varijable za sustav Vilina špilja–izvor Omble uzeti su obzir samo nalazi (i iz njih determinirane svojstva u obradi ilustriranoj na Slici 5.3. – vidi dolje) prikupljeni u istraživanju koje je proveo HBDS (2012.), jer je samo za to istraživanje bio poznat istraživački napor, a k tome je to istraživanje bilo i metodološki komparabilno s recentnim istraživanjima.

Slika 5.1.2. Korelacija jediničnog istraživačkog napora i jediničnog broja nalaza u speleološkim objektima na dubrovačkom području.

Uvidom u Sliku 5.1.2. može se uočiti izrazita korelacija (ukupno 90% varijabilnosti jediničnog broja nalaza objašnjeno je jediničnim istraživačkim naporom), pri čemu ni jedan speleološki objekt ne odstupa znatnije od pravca izjednačenja (uz izuzetak Močiljske špilje u kojoj je vjerojatnost nalaza špiljskog organizma iznadprosječna). Iz toga se može zaključiti da je prosječna vjerojatnost nalaza

169
štupljih organizama u podzemlju šireg dubrovačkog područja približno konstantna na cijeloj površini (naravno, uz brojne nerealne pretpostavke koje su posljedica uprosjećivanja poput: podjednako dugog istraživačkog boravka u speleološkom objektu tijekom dana, podjednake brzine kretanja po objektu, iste metodologije prikupljanja faune, podjednakog broja podzemnih staništa, podjednakoj odnosu volumena i površine unutar objekta, itd.). Drugim riječima, u prosjeku za cijelo istraživano područje vrijedi da ako se kubični dekametar (1000 m3) špiljskog prostora istražuje jedan čovjek/dan može se očekivati da će se u prosjeku naći nešto manje od šest pravih štupljih organizma (troglobionata i stigobionata; nezavisno od taksonomske pripadnosti) koji su prikupljeni na terenu i u konačnici probrani kao reprezentativni za determinaciju, pri čemu je taj odnos linearan (povećanje istraživačkog napora rezultira proporcionalnim povećanjem broja organizama).

Na Slici 5.1.3. prikazana je korelacija jediničnog istraživačkog napora i jediničnog broja svojti (definiranog omjerom broja pronadenih svojti štupljih organizama i volumena objekta koji govori o prosječnom broju različitih svojti po jedinici volumena, odnosno općenito o prosječnoj vjerojatnosti nalaza različitih svojti unutar volumne jedinice podzemnog prostora).

**Slika 5.1.3. Korelacija jediničnog istraživačkog napora i jediničnog broja svojti u speleološkim objektima na dubrovačkom području.**

Uvidom u Sliku 5.1.3. može se također uočiti linearna korelacija (ukupno 74% variabilnosti jediničnog broja svojti objašnjeno je jediničnim istraživačkim naporom). Linija izjednačenja za cijelo dubrovačko područje indicira da ako se kubični dekametar špiljskog prostora istražuje jedan
čovjek/dan može se očekivati da će se u prosjeku, nakon determinacije, za taj prostor zabilježiti nešto više od dvije različite svojte (nezavisno od broja pronađenih organizama), uz proporcionalno povećanje broja svojti povećanjem istraživačkog napor. Odstupanje od te linije izjednačenja za konkretni objekt indicira prosječnu gustoću različitih svojti po jedinici volumena, koja je maksimizirana kod Močiljske špilje (što indicira najhomogeniji raspored različitih svojti u podzemnom prostoru), a minimizirana kod sustava Vilina špilja–izvor Omble (što indicira stratificiranost svojti prema pojedinim dijelovima podzemnog prostora).

Na Slici 5.1.4. prikazan je odnos jediničnog broja nalaza i jediničnog broja taksona, koji je analogan odnosima obje te varijable s jediničnim istraživačkim naporom. Dobiveni rezultat (uz 89% objašnjene varijabilnosti) može se interpretirati kao prosječna učestalost determinacije različitih svojti unutar nekog broja organizama (prikupljenih na terenu i probranih za determinaciju), što za cijelo područje u prosjeku iznosi nešto manje od jedne polovine (odnosno, među N prikupljenih organizama bit će u konačnici nešto manje od N/2 različitih svojti), pri čemu je taj odnos najmanji kod sustava Vilina špilja – izvor Omble (gdje je približno u prosjeku jedna svojta na četiri organizma, a najvećii kod Močiljske špilje (približno u prosjeku jedna svojta na dva organizma).

Slika 5.1.4. Korelacija jediničnog broja nalaza i jediničnog broja taksa u speleološkim objektima na dubrovačkom području.

Nakon što se u prethodnim obradama pokazalo da pojedini speleološki objekti u dubrovačkom području izrazito variraju u stupnju istraženosti može se zaključiti da se odnos prikazan na Slici 5.1. ne
može smatrati realnim, jer ne uzima u obzir uloženi istraživački napor. Način da se to prevlada (a obzirom da podatak o istraživačkom naporu postoji) jest da se broj svojti stavi u korelaciju ne samo s volumenom speleološkog objekta, nego istovremeno i istraživačkim naporom uloženim u istraživanje (i jedno i drugo će, u međusobnoj interakciji, očekivano povećavati broj pronadjenih taksa). Prikladni model izjednačenja tada je ovaj:

\[ N = a V^{(b + c I)} \]

gdje je \( N \) broj svojti u objektu, \( V \) njegov ukupni poznati volumen, \( I \) istraživački napor dok su \( a, b \) i \( c \) empirijski parametri dobiveni izjednačenjem podataka. Slika 5.1.5. prikazuje rezultat takvog izjednačenja.

Slika 5.1.5. Korelacija volumena speleološkog objekta i istraživačkog napor sa brojem svojti pronadjenih u speleološkim objektima na širem dubrovačkom području.

Usporedbom Slika 5.1.1. i 5.1.5. uočljivo je znatno manje rasipanje oko linije (plohe) izjednačenja, uz povećanje objašnjene varijabilnosti s 35% na 42%, što i dalje upućuje na postojanje dodatnih čimbenika koji uvjetuju bioraznolikost špiljskog objekta.
Slika 5.1.6. prikazuje identični rezultat kao i Slika 5.1.5. na drugi način, gdje se može jasno uočiti da sustav Vilina špilja - izvor Omble od ostalih speleoloških objekata znatno odudara prema kombinaciji vlastitog volumena i stupnju njegove istraženosti, iz čega proizlazi i veći broj svojti. Drugim riječima, može se očekivati da se sličan broj svojti kao i u sustavu Vilina špilja – izvor Omble pronađe i u drugim približno jednako velikim objektima (npr. Glogova jama, Pliješina jama), kada se u istraživanje tih objekata uloži istraživački napor usporediv naporom uloženim u istraživanje tog sustava.

![Graph showing correlation between volume of speleological objects and the research effort]
Slika 5.1.7. Ekstrapolacija broja vrsta procijenjenih u funkciji volumena speleološkog objekta i istraživačkog napora na ukupni podzemni prostor šireg dubrovačkog područja. Svaka linija predstavlja konstantni istraživački napor.

Na slici se vidi da je istraživački napor u sklopu ovog projekta uložen u istraživanje Plješine jame i Špilje za Gromačkom vlakom bio nedostatan, jer bi se ekstrapolacijama uz takav istraživački napor u podzemnom prostoru cijelog šireg područja moglo očekivati manje svojti nego što ih je već sada nađeno, što bi bilo paradoksalno.

Kada bi u istraživanje cjelokupnog očekivanog podzemnog prostora na području istraživanja od 8,2 km³ uložili jedinični istraživački napor kakav je bio uložen u istraživanje Špilje za Gromačkom vlakom u sklopu ovog projekta (usporedi Sliku 5.1.6.) kao predstavnika recentnih istraživanja, mogli bi očekivati da ćemo na tom području naći 661 svojtu, dakle neznatno više od broja do sada nađenih. Ako bi se ta procjena u budućnosti pokazala realna, tada bi već sada mogli tvrditi da smo na temelju dosadašnjih biospeleoloških istraživanja većim dijelom upoznali bioraznolikost podzemlja šireg dubrovačkog područja i da će buduća istraživanja novih podzemnih prostora uglavnom donositi nove nalaze već ranije zabilježenih svojti.

S druge strane, kada bi u istraživanje cjelokupnog očekivanog podzemnog prostora šireg područja uložili istraživački napor kakav je uložen u istraživanje sustava Vilina špilja – izvor Omble od strane HBSD 2012. mogli bi očekivati pronalazak 661 svojte. Ako bi se ova procjena u budućnosti pokazala realna, to bi značilo da u dosadašnjim istraživanjima još nismo upoznali ni polovinu svojti koje žive u podzemlju šireg dubrovačkog područja (usporedi poglavlje 4.3).
Ako se ograničimo samo na ekološku mrežu NATURA 2000 i njezino područje „Paleoombla-Ombla“ tada bi se na isti način procijenjeni očekivani broj svojti na tom području kretao u intervalu od 110 (uz istraživački napor iz Špilje za Gromačkom vlakom) do 349 (uz istraživački napor iz sustava Vilina špilja – izvor Omble).

Ove nam (u svojoj suštini vrlo nepouzdanе) procjene daju prve indicije o ukupnom bogatsvu podzemne faune na širem dubrovačkom području koje gotovo sigurno nadilazi do sada upoznato bogatsvo i koje tek treba biti istraženo u budućnosti (što uključuje i pronalazak za sada nepoznatih podzemnih prostora), pri čemu je objektivno pitanje do koje će se to mjere moći ostvariti, s obzirom na ograničenja u pristupu čovjeka u podzemlje.
6 Zaključak

Opsežna biospeleološka istraživanja provedena tijekom 2014. godine u sklopu projekta Istraživanje špiljskih staništa i izvorišnih područja šireg dubrovačkog područja s ciljem vrednovanja bioraznolikosti i ocjena prihvatljivosti izgradnje hidroenergetskih objekata rezultirala su rapidnim povećanjem stupnja istraženosti živog svijeta u podzemlu dubrovačkog područja, u odnosu na ranije prikupljene spoznaje.

Iako se već duže vrijeme zna da je na dubrovačkom području prisutna vrlo bogata i rijetka podzemna fauna, do sada se zbog ograničenog opsega istraživanja mogao steći dojam da je ta bioraznolikost specifična za određene (ranije dobro istražene) speleološke objekte (poput sustava Vilina špilja-izvor Omble). Nakon ovih istraživanja, može se zaključiti kako je značajan dio (više od 80%) bioraznolikosti iz podzemnog sustava Vilina špilja - izvor Omble prisutan u većem broju speleoloških objekata na tom području pa se cijelo područje može smatrati iznimno bogatim podzemnom faunom, ali istovremeno i relativno homogenim po tome bogatstvu.

Dosad obrađeni podaci i prezentirani rezultati daju nam prve indicije o ukupnom bogatsvu podzemne faune na širem dubrovačkom području koje gotovo sigurno nadilazi do sada poznatim podzemnim prostorom, pri čemu je objektivno pitanje koja se može ostvariti, s obzirom na ograničenje u pristupu čoveku u podzemlje. Očekivani ukupni broj pravih špiljskih vrsta na širem dubrovačkom području vjerojatno znatno nadilazi broj do sada utvrđenih vrsta, što predstavlja izazov za buduća istraživanja. U njima težiše treba staviti na slabije istražene objekte i za sada sasvim neistražene podzemne prostore koje u većini slučajeva tek treba pronaći, ali ne treba zapostaviti ni već sada dobro istražene objekte kao što su primjerice špilje - izvor Omble, sve dok se očekuje da se i u njima još pronađe koja svojstva koja na tom lokalitetu ranije nije zabilježena (npr. unutar taksonomskih skupina koje ranije nisu dovoljno detaljno zahvaćene istraživanjem).

Može se zaključiti da su već do sada dobiveni rezultati u sklopu tekućeg projekta Istraživanje špiljskih staništa i izvorišnih područja šireg dubrovačkog područja s ciljem vrednovanja bioraznolikosti i ocjena prihvatljivosti izgradnje hidroenergetskih objekata koji je inicirala i koji financira Hrvatska elektroprivreda d.d. znatno povećali razinu uvida u izuzetno bogatstvo speleoloških objekata i raznolikosti živog svijeta u njima na istraživanom području, tako što su: a) donijeli brojne nove nalaze ranije nezabilježenih svojstva na tom području (a među njima i veći broj potencijalno novih svojstva za znanost), b) donijeli brojna novih nalazišta svojstva koje su na širem području već bile ranije zabilježene, c) rasvijetlili utjecaj istraživačkog napora na konačni rezultat bioinventarizacije podzemnih staništa i tako otklonili pogrešne teze o prostornoj nehomogenosti u raznolikosti podzemne faune na području i d) donijeli prve procjene o očekivanoj ukupnoj raznolikosti živog svijeta u podzemnih staništima područja.
7 LITERATURA

U nastavku je prikazan popis citiranih literaturnih navoda kao i onih koji su korišteni prilikom taksonomske obrade utvrđenih taksa te interpretacije rezultata.

7.1 Objavljene reference


42. CUKROV, M., OZIMEC, R., 2014: Prirodoslovne značajke Rijeke dubrovačke (Natural characteristic of the Rijeka Dubrovačka), Hrvatsko biospeleološko društvo, 1-216, Zagreb.


65. GOTTSTEIN MATOČEC, S., OZIMEC, R., JALŽIĆ, B., KEROVEC, M., BAKRAN-PETRICIOLI, T., 2002: Raznolikost i ugroženost podzemne faune Hrvatske (Croatian hypogean fauna-Diversity and threats), 1-82, Ministarstvo zaštite okoliša i prostornog uređenja Republike Hrvatske, Zagreb

66. GOTTSTEIN, S., 2010: Priručnik za određivanje podzemnih staništa u Hrvatskoj prema direktivi o staništima EU, Državni zavod za zaštitu prirode, 1-99, Zagreb


78. HO, H. M. & BENNY, G. L., 2007: Two new species of Syncephalis from Taiwan, with a key to the Syncephalis species found in Taiwan. Botanical Studies, 48: 319-324.


83. JALŽIĆ, B., BEDEK, J., BILANDŽIJA, H., CVITANOVIĆ, H., DRAŽINA, T., GOTTSTEIN, S., KLJAKOVIĆ-GAŠPIĆ, F., LUKIĆ, M., OZIMEC, R., PAVLEK, M., SLAPNIK, R.,
115. KRATOCHVIL, J., 1938a: Lola insularis n. g., n. sp. et Travunia (?) jandai n. sp. deux opilions cavernicoles nouveaux des îles de la Dalmatie meridionale. Folia entomologica, 1: 44–54.
133. MARIJANOVIĆ, B., 2005: Gudnja, višeslojno prapovijesno nalazište, Dubrovački muzeji – Arheološki muzej, 1-180, Dubrovnik.


MILANOVIĆ, P.T., 2006: Karst istočne Hercegovine i Dubrovačkog priobalja (Karst of Eastern Herzegovina and Dubrovnik littoral), ASOS, 1-362, Beograd.


NATEVIĆ, Lj. & PETROVIĆ, V., 1967: Osnovna geološka karta SFRJ, M 1:100 000, List Trebinje, Beograd.


166. OZIMEC, R., 2004: List of Croatian pseudoscorpion fauna (Arachnida, Pseudoscorpiones), Natura Croatica, 13/4: 381-394, Zagreb


171. OZIMEC, R., 2010: Tipski špiljski lokaliteti i špiljska fauna opisana s otoka Korčule i Badije, Godišnjak grada Korčule, 13: 457-467, Korčula


175. OZIMEC, R., LUČIĆ, I., 2010: The Vjetrenica cave (Bosnia & Herzegovina) – one of the world’s most prominent biodiversity hotspots for cave-dwelling fauna. Subterranean Biology, 7(2009):17-23.


186. PEŠIĆ, V. M., 2002: New records of water mites (Acari, Hydracarina) based on the material collected by T. Petkovski in Croatia, including a Check list of species recorded in Croatia, Natura Croatica, 11/4: 447-453.


225. SLABE T., 1995: Cave Rocky Relief and its Speleogenetical Significance, 1-128, Ljubljana
258. VERHOEFF, K., W., 1897: Über Diplopoden aus Bosnien, Herzegowina und Dalmatien. Theil 1-3. Arch. Naturg., 64/1: 139-146; 147-156; 181-204.

190
7.2 Nepublicirani radovi (Stručni Elaborati; diplomske, magistarske i doktorske teze)


8 Prilozi
8.1 Kartografski prikaz istraživanih speleoloških objekata
8.2 Katastarski listovi istraživanih objekata
KATASTARKSI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA:
Glogova jama

ZEMLJOPISNA KARTA (1:25000):
625-4-3

LOKALITET:
Sniježnica, Kuna Konavoska, Konavle

KOORDINATE
X = Koordinate se nalaze u bazama podataka
Y = Z = speleoloških društava.

TOČNOST POLOŽAJA:
GPS

POLOŽAJ I OPIS OBJEKTA:
Ogroman krušljiv i opasan ulaz. Koljenasta jama, dnevno svjetlo prodiru do 100 m dubine. Dno ulazne vertikale na 110 m. Penj 5 m od dna, prolaz 50x60 cm, skok 10 m, kanal lijevo i desno, ide se desnim, lijevi je upitnik. Jama nastavlja skokom od 5 m, zatim penj preko bloka u završni skok od 25 m. Na dnu se voda gubi u uskoj, neprolaznoj pukotini. Oko 11 m od dna postoji otvor u vertikali koji ide u plus i tim kanalom dolazi voda. Cijela jama je kolektor vode.

PRISTUP:
Na ulazu u Kunu Konavosku skrenuti na prvi makadam desno. Nakon 300 m makadam postaje loš te je dalje moguće samo terencem ili pješice. Ići do kraja makadama i nastaviti starim austrougarskim putem koji vodi na Sniježnicu. U jednom trenutku treba skrenuti s austrougarskog puta i nastaviti planinarskom markacijom po rubu uvale koja vodi direktno do jame.

VRSTA:
Jama

MORFOLOŠKI TIP:
Razveden

DUBINA:
-156 m

DULJINA:
428 m

VERTikalna razlika:
156 m

VOLUMEN:
104 506 m³

KARAKTERISTIKE ULAZA:
Lako uočljiv veliki jamski ulaz

HIDROGEOLOŠKA KARAKTERISTIKA:
Š povremenim tokom

HIDROLOŠKA FUNKCIJA:
Protočni

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Penjanje, proširivanje uskog prolaza

OBJEKT ISTRAŽILI:
ADIPA, Geonatura, SO HPK Sv. Mihovil, SD Karlovac, SO HPD Željezničar, SO PD Dubovac

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara, Chiroptera
<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Gusanska špilja</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze u bazama podataka</td>
</tr>
<tr>
<td></td>
<td>Y = speleoloških društava.</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Z = GPS</td>
</tr>
<tr>
<td></td>
<td>LOKALITET: Dubravka, Bjelotina, Konavle</td>
</tr>
<tr>
<td>TOČNOST POLOŢAJA:</td>
<td></td>
</tr>
<tr>
<td>REDNI BROJ:</td>
<td>2</td>
</tr>
<tr>
<td>BROJ PLOČICE:</td>
<td>069-053</td>
</tr>
</tbody>
</table>

**Poloţaj i opis objekta:**
Špilja se nalazi na Bjelotini, sjeverno od mjesta Dubravka. Ima strom ulaz u kamenim blokovima. Prostrana dvorana dubine oko 30 m. Nalazi se u blizini državne granice.

**Pristup:** Od ceste Dubravka - Trebinje (od granice oko 500 m u Hrvatskoj) na staru Napoleonovu cestu, prvi zavoj i po koordinatama desno kroz šumu hrasta medunca u kosom smjeru prema špilji koja je prepoznatljiva po markantnoj stijeni.

**Vrsta:** Špilja
**Dubina:** - 27 m
**Duljina:** 46 m
**Volumen:** 1895 m³

**Morfološki tip:** Razvijeni

**Vertikalna razlika:** 27 m

**Karakteristike ulaza:**
- Lako uočljiv špiljski ulaz

**Hidrogeološka karakteristika:**
- S povremenom nakapnicom

**Hidrološka funkcija:**
- Bez funkcije

**Perspektive daljnjih istraţivanja:**
- Penjanje

**Objekt istraţili:**
- ADIPA, HBSD, SK Ursus spelaeus, Dinaridi DISKF

**Napomena:**
Prikupljanje faune i gljiva, fotografiranje prostora i istraţivanja, mjerenje mikroklimatskih parametara
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>JAMA KOD GROBLJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>624-2-4</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>TRNOVA, SLANO, DUBROVAČKO PRIMORJE</td>
</tr>
<tr>
<td>TOČNOST POLOŽAJA:</td>
<td>GPS</td>
</tr>
<tr>
<td>REDNI BROJ:</td>
<td>3</td>
</tr>
<tr>
<td>BROJ PLOČICE:</td>
<td>03-0477</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**

Jama se nalazi u mjestu Trnova kraj starog groblja. Ulaz 1,5x1,5 m. Jama se nakon 2 metra sužava. Nakon 8 metara je polica s koje se spušta do dna.

**PRISTUP:**

Iz Trnova se ide starim putem do groblja, oko 10 minuta.

<table>
<thead>
<tr>
<th>VRSTA:</th>
<th>JAMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORFOLOŠKI TIP:</td>
<td>JEDNOSTAVAN</td>
</tr>
</tbody>
</table>

| DUBINA: | 23 m |
| VERTICALNA RAZLIKA: | 23 m |
| DULJINA: | 23 m |
| VOLUMEN: | 184 m³ |

**KARAKTERISTIKE ULAZA:**

Lako uočljiv veliki jamski ulaz

**HIDROGEOLOŠKA KARAKTERISTIKA:**

Š nakapnicom

**HIDROLOŠKA FUNKCIJA:**

Bez funkcije

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:**

Nema

**OBJEKT ISTRAŽILI:**

ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac

**NAPOMENA:**

Prikupljanje faune i gljiva, fotografranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
IME OBJEKTA: Jama na gomilama

ZEMLJOPISNA KARTA (1:25000): 624-2-3

LOKALITET: Čepikuće, Dubrovačko primorje

POLOŽAJ I OPIS OBJEKTA: Jama se nalazi u Čepikućama. Ima mali ulaz s kamenim blokom na njemu, vertikala od 5 m. U jami se nalazi smeće. Jedan kanal ide lijevo, a jedan u plus. Na kraju još jedan mali skok od 5 m.

PRISTUP: Do granice na Čepikućama i onda desno nakon 50 m. Jama je od ceste udaljena oko 50 m

VRSTA: Jama
MORFOLOŠKI TIP: Jednostavan
DUBINA: - 10 m
DULJINA: 31 m
VERTIKALNA RAZLIKA: 10 m
VOLUMEN: 1231 m³

KARAKTERISTIKE ULAZA: Mali ulaz
HIDROGEOLOŠKA KARAKTERISTIKA: S nakapnicom
HIDROLOŠKA FUNKCIJA: Bez funkcije

PERSPEKTIVE DALJINIH ISTRAŽIVANJA: Nema

OBJEKT ISTRAŽILI:
ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac

NAPOMENA: Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara
KATASTARKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: 
Jama na Kunku

ZEMLJOPISNA KARTA (1:25000): 
625-4-4

LOKALITET: 
Jablanov dolac, Praprotno, Dubravka, Konavle

POLOŽAJ I OPIS OBJEKTA:
Od ceste Dubravka - Trebinje, od granice oko 100 m u Hrvatskoj lijevo dolje do dolca (s južne strane dolca). Vertikalom od 10 m do sipara po kojem se dolazi do kraja jame. Vertikala je krušljiva i opasna. Uazna sidrišta su prirodna i za spuštanje u jamu je potrebno uže od 30m.

PRISTUP:
Cesta od Dubravke prema Trebinju, vozi se skroz do granice (zarušenje na cesti). Tamo parkirati i nastaviti pješice u dolac. Oprez zbog minsko sumnjivog područja označenog na karti.

VRSTA: 
Jama
VRSTIJA: 
Jednostavan
DUBINA: 
- 21 m
DULJINA: 
32 m
VOLUMEN: 
230 m³

KARAKTERISTIKE ULAZA: 
Jamski ulaz lako uočljiv u dnu dolca

HIDROGEOLOŠKA KARAKTERISTIKA: 
Suh

HIDROLOŠKA FUNKCIJA: 
Bez funkcije

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA: 
Nema

OBJEKT ISTRAŽILI:
ADIPA, HBSD, SO PD Dubovac, JK Kamnik, PD Paklenica SO Liburnija

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara
**IME OBJEKTA:** Jama na vrh Vrguda  
**ZEMLJOPISNA KARTA (1:25000):** 625-3-1  
**LOKALITET:** Osojnik, Dubrovnik

<table>
<thead>
<tr>
<th>REDNI BROJ</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROJ PLOČICE</td>
<td>03-0484</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**  
Jama se nalazi iznad Ljubača, ali pristup jami je od Osojnika. Ulazna vertikala je 8 m, jama se dijeli na dva krala. Istočnim kanalom se spušta bez užeta. U zapadnom kanalu je spust od par metara nakon kojeg je uzbrdica. Slijedi vertikala kojom se spušta do dna.

**KARAKTERISTIKE ULAZA:**  
Jamski ulaz, lako uočljiv u stijenama

**HIDROGEOLOŠKA KARAKTERISTIKA:**  
Š nakapnicom

**HIDROLOŠKA FUNKCIJA:**  
Bez funkcije

**POREDBE DASNOH ISTRAŽIVANJA:**  
Nema

**NAPOMENA:**  
* Stvarna duljina prikazana na nacrtu naknadno je ispravljena u programu Speleolit. Potrebna oprema: uže 20 i 30 m, 4 sidrišta fix-a 8 mm. Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
IMI OBJEKTA: Jama pod Brk

ZEMLJOPISNA KARTA (1:25000): 625-4-3

LOKALITET: Mihanići, Konavle

POLOŢAJ I OPIS OBJEKTA:
Jama se nalazi kod zaseoka Mihanići, Konavle. Nakon ulaza veličine 40x50 cm, jama se širi pukotinski, inače uska, oko 60 cm širine. Opasna za prolazbenje jer kamenje pada posvuda. Postoji upitnik na kraju, treba penjati uz osiguranje. Cijela jama u jednom meandru.

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
### IME OBJEKTA:
Kuna špilja

### ZEMLJOPISNA KARTA (1:25000):
625-4-3

### LOKALITET:
Gruda, Konavle

### IME OBJEKTA:
Kuna špilja

### ZEMLJOPISNA KARTA (1:25000):
625-4-3

### LOKALITET:
Gruda, Konavle

### POLOŽAJ I OPIS OBJEKTA:
Uzorak je smješten u zarašćenom masliniku i teško je uočljiv. Dimenzije ulaza su 1,5x0,5 m. Špilja se sastoji od jedne dvorane odvojena u nekoliko kanala.

### PRISTUP:
Posije Gruda skrenuti za Bačev Do. Parkirati kod kuće na trasi uskotračne pruge. Od kuće oko 50 m po pruzi pa oko 5 m desno od pruge, prema glavnoj cesti.

### VRSTA:
Špilja

### DUBINA:
-3 m

### VERTICALNA RAZLIKA:
3 m

### MORFOLOŠKI TIP:
Razveden

### DULJINA:
30 m*

### VOLUMEN:
136 m³

### KARATERISTIKE ULAZA:
Teško uočljiv špiljski ulaz ispod bloka

### HIDROGELOŠKA KARAKTERISTIKA:
Suh

### HIDROLOŠKA FUNKCIJA:
Bez funkcije

### PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

### OBJEKT ISTRAŽILI:
ADIPA, HBSD, SO PD Dubovac, JK Kamnik

### NAPOMENA:
Prikupljanje faune i glijiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara. * Stvarna duljina prikazana na nacrtu naknadno je ispravljena u programu Speleolit.
**KATASTARKI LIST**
**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Pasja Špilja</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze u bazama podataka za speleoloških društava.</td>
</tr>
<tr>
<td>625-4-3</td>
<td>Y = Koordinate se nalaze u bazama podataka za speleoloških društava.</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Z = Koordinate se nalaze u bazama podataka za speleoloških društava.</td>
</tr>
<tr>
<td>Vignje, Gruda, Konavle</td>
<td>TOČNOST POLOŽAJA: GPS</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**
Ulabaj je smešten u rubu dolca, 150 m od asfaltne ceste pod lako uočljivom stijenom. Špilja se sastoji od jednostavnog špijuljskog kanala koji se nakon 9 m dođe do kraja.

**VRSTA:** Špilja  
**DUBINA:** 0 m  
**VERTikalna razlika:** 0 m  
**DULJINA:** 9 m  
**VOLUMEN:** 44,55 m³

**Karakteristike ulaza:** Lako uočljiv špijuljski ulaz ispod stijene

**Hidrogeološka karakteristika:** Suh

**Hidrološka funkcija:** Bez funkcije

**Perspektive daljnjih istraživanja:** Nema

**Objekti istražili:** ADIPA, HBSD, SO PD Dubovac, PD Paklenica SO Liburnija

**Napomena:** Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
# KATASTARSKI LIST
## SPELEOLOŠKOG OBJEKTA

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Pećina na Velikom Humu</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>574-3-4</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Veliki Hum, Mliniše, Zažablje</td>
</tr>
<tr>
<td>TOČNOST POLOŽAJA:</td>
<td>GPS</td>
</tr>
<tr>
<td>X = Koordinate se nalaze</td>
<td></td>
</tr>
<tr>
<td>Y = u bazama podataka</td>
<td></td>
</tr>
<tr>
<td>Z = speleoloških društava.</td>
<td></td>
</tr>
</tbody>
</table>

## REDNI BROJ : 10

## BROJ PLOČICE :

### POLOŽAJ I OPIS OBJEKTA:

**VRSTA :** Špilja
**DUBINA :** -1 m
**DULJINA :** 13 m
**VOLUMEN :** 54,5 m³

**POLOŽAJ I OPIS OBJEKTA:**

Špilja u kojoj čovjek drži ovce i koze. Na podu tekuće gnojivo, jako neugodan miris.

**VRSTA** : Špilja
**MORFOLOŠKI TIP** : Jednostavan
**DUBINA** : -1 m
**DULJINA** : 13 m
**VERTIKALNA RAZLIKA** : 0 m

### KARAKTERISTIKE ULAZA :
Lako ovočljiv špiljski ulaz ispod stijene

### HIDROGEOLOŠKA KARAKTERISTIKA :

**HIDROGEOLOŠKA FUNKCIJA** :

Suh

**HIDROLOŠKA FUNKCIJA** :

Bez funkcije

**PERSPEKTIVE DALJNJIH Istraživanja** :
Nema

**PRISTUP:**

Od mosta u Bijelom Viru skrene se u polje i poljskim putevima dođe se do vodocrplišta. Još se ide oko 100 m po cesti pa malim putem oko 30 m do špilje.

**OBJEKT ISTRAŽILI :**

ADIPA, HBSD, SO PD Dubovac, SK Ozren Lukić

**NAPOMENA :**

Špilja u kojoj čovjek drži ovce i koze. Na podu tekuće gnojivo, jako neugodan miris.
IME OBJEKTA: Pješina jama
ZEMLJOPISNA KARTA (1:25000): 625-4-3
LOKALITET: Snježnica, Kuna Konavoska, Konavle

POLOŢAJ I OPIS OBJEKTA:
Ogroman ulaz, ulazi se sa stabla na SI, prirodno sidrište. Prva polica na 35 m, onda dalje u vertikalu od 60 m do iduća polica sa siparom. Sipar duljine 20 m i skok od 25 m. Dođe se u veliku dvoranu u kojoj se povremeno stvara jezero do 3 m. Iz dvorane ide mali plus od 4 m i ulazi se u meandar kojim se vertikalom od 40 m ulazi u iduću veliku dvoranu 20 x 15 m. Iz nje ide plus u upitnik kroz zarušenje do sljedećeg upitnika koji je plus od par metara gdje se nalazi puno koraloida i velike kilćine guana.

KARAKTERISTIKE ULAZA:
Lako uočljiv veliki jamski ulaz

HIDROGEOLOŠKA KARAKTERISTIKA:
S nakapnicom

HIDROGEOLOŠKA FUNKCIJA:
Protočni

PERSPEKTIVE DALJNJIH ISTRAŢIVANJA:
Penjanje, proširivanje uskog prolaza

VRSTA: Jama
MORFOLOŠKI TIP: Koljenast
DUBINA: 173 m
DULJINA: 418 m
VERTIKALNA RAZLIKA: 418 m
VOLUMEN: 120 397 m³

KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

REDNI BROJ: 11
BROJ PLOČICE: 21-004

POLOŢAJ I OPIS OBJEKTA:
Ogroman ulaz, ulazi se sa stabla na SI, prirodno sidrište. Prva polica na 35 m, onda dalje u vertikalu od 60 m do iduća polica sa siparom. Sipar duljine 20 m i skok od 25 m. Dođe se u veliku dvoranu u kojoj se povremeno stvara jezero do 3 m. Iz dvorane ide mali plus od 4 m i ulazi se u meandar kojim se vertikalom od 40 m ulazi u iduću veliku dvoranu 20 x 15 m. Iz nje ide plus u upitnik kroz zarušenje do sljedećeg upitnika koji je plus od par metara gdje se nalazi puno koraloida i velike kilćine guana.

KARAKTERISTIKE ULAZA:
Lako uočljiv veliki jamski ulaz

HIDROGEOLOŠKA KARAKTERISTIKA:
S nakapnicom

HIDROGEOLOŠKA FUNKCIJA:
Protočni

PERSPEKTIVE DALJNJIH ISTRAŢIVANJA:
Penjanje, proširivanje uskog prolaza

OBJEKT ISTRAŢILI:
ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac, SO HPD Želježničar, SO HPD Snježnica

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraţivanja, mjerenje mikroklimatskih parametara, Chiroptera, GPS trag do ulaza.
**IME OBJEKTA:** Rafova špilja  
**ZEMLJOPISNA KARTA (1:25000):**  
**LOKALITET:** Zaton, Dubrovnik  
**POLOŽAJ I OPIS OBJEKTA:** Nalazi se u uvali južno od Zatona. Prostrana, lijepa morska špilja s plažom.

**PRISTUP:**  
Put s kopna: uz glavnu cestu na samome ulazu u Zaton, s desne strane prva kuća (Vila Vijolić br. 49). Stazom pored kuće s desne strane hodat oko 70 m te iza vinogрадa skrenuti na stazu s desne strane, hodati oko 100 m do stare kamene kuće te kod nje lijevo u malu borovu šumu. Pratiti stazu do stijena i ako se roni na stijenama treba skrenuti desno. Špilja i uvala su lijevo.

**VRSTA:** Špilja  
**MORFOLOŠKI TIP:** Jednostavan  
**ŠPILJSKI ULAZ:** Morski ulaz s mora  
**HIDROGEOLOŠKA KARAKTERISTIKA:** Morska špilja  
**HIDROLOŠKA FUNKCIJA:** Rafaška špilja

**VRSTA:** Špilja  
**DUBINA:** 0 m  
**DULJINA:** 59 m  
**VERTIKALNA RAZLIKA:** 0 m  
**VOLUMEN:** 1445 m³

**POJEDINACHRISTIKE ULAZA:** Špiljski ulaz s mora  
**HIDROGEOLOŠKA KARAKTERISTIKA:** Morska špilja  
**HIDROLOŠKA FUNKCIJA:** Rafaška špilja

**NAPOMENA:** Miješanje slatke i slane vode na kraju, ali ne izraženo. Mjerenje mikroklimatskih parametara. Preporuka: doći čamcem.
IME OBJEKTA: Sklenica špilja
ZEMLJOPISNA KARTA (1:25000): 625-4-3
LOKALITET: Vignje, Gruda, Konavle

POLOŽAJ I OPIS OBJEKTA:
Ulaz je smješten u miješanoj šumi, 50 m od asfaltirane ceste pod lako uočljivom stijenom. Špilja se sastoji od jednostavnog špiljskog kanala.

VRSTA: Špilja
DUBINA: 0 m
VERTikalna RAZLIKA: 0 m
VOLUMEN: 60 m³

Karakteristike ulaza:
Lako uočljiv špiljski ulaz ispod stijene

HIDROGEOLOŠKA KARAKTERISTIKA:
Suh

HIDROLOŠKA FUNKCIJA:
Bez funkcije

Perspektive daljnjih istraživanja:
Nema

Pristup:
S glavne ceste za Komaji-Vignje skrene se prema mjestu Vignje. Parkirati na trasi uskotračne pruge i vratiti se cestom 50 m te ići okomito kroz šikaru po koordinatama. U početku izgleda kao put, ali nije.

Objekti Istražili:
ADIIPA, HBSD, SO PD Dubovac, PD Paklenica SO Liburnija

Napomena:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Špilja iznad crkvice Gospe od Luga</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>625-4-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze</td>
<td></td>
</tr>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>Y = u bazama podataka</td>
<td></td>
</tr>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>Z = speleoloških društava.</td>
<td></td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Popovići, Gruda, Konavle</td>
<td></td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**

Špilja je smještena u zaseoku Popovići, iznad crkvice Gospe od Luga u Konavskom polju. Prostor špilje sastoji se od jednostavnog špiljskog kanala na kraju kojega je vertikala koja vodi u završnu pukotinsku dvoranu. Za savladavanje vertikale potrebno je uže od 10 m i dva sidrišta (F8 i S).

**PRISTUP:**

Kod Farme, (ponora), tunela i kamenoklesara skrenuti uzbrdo do preostale ceste od uskotračne pruge. Parkirati i ići u smjeru istoka oko 600 m. S desne strane, odmah uz cestu nalazi se ulaz špilje.

**VRSTA:** Špilja

**MORFOLOŠKI TIP:** Jednostavan

**DUBINA:** 6 m

**DULJINA:** 38 m

**VERTIKALNA RAZLIKA:** 11 m

**VOLUMEN:** 342 m³

**KARAKTERISTIKE ULAZA:** Lako uočljiv špiljski ulaz s trase uskotračne pruge

**HIDROGEOLOŠKA KARAKTERISTIKA:** S povremenom stajačom vodom

**HIDROLOŠKA FUNKCIJA:** Protočni

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:** Nema

**OBJEKT ISTRAŽILI:** ADIPA, HBSD, SO PD Dubovac, SK Ursus spelaeus

**NAPOMENA:** Prikupljanje faune i gljive, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
POLOŽAJ I OPIS OBJEKTA:

PRISTUP:
Kod Farme, (ponora), tunela i kamenoklesara skrenuti uzbrdo do preostale ceste od uskotračne pruge. Parkirati i ići u smjeru istoka oko 600 m. Deset metara prije špilje iznad crkvice Gospe od Luga uz vodovodnu cijev uzbrdo do ulaza.

VRSTA: Špilja
DUBINA: - 24 m
VERTIKALNA RAZLIKA: 24 m
MORFOLOŠKI TIP: Razveden
DULJINA: 72 m
VOLUMEN: 483 m³
KARAKTERISTIKE ULAZA: Tri jamska ulaza i jedan špiljski ulaz (neprolazan)

HIDROGEOLÓŠKA KARAKTERISTIKA:
S povremenom stajaćom vodom

HIDROLOŠKA FUNKCIJA:
Protočni

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Prokopavanje spoja sa Špiljom iznad crkvice Gospe od Luga. Osjetno je strujanje zraka na pretpostavljenom spoju.

OBJEKT ISTRAŽILI:
ADIPA, HBSD, SO PD Dubovac, SK Ursus spelaeus

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
IME OBJEKTA: Špilja kod kapije iznad Omble
ŽEMLJOPISNA KARTA (1:25000): 625-3-2
LOKALITET: Omla, Dubrovnik

POLOŽAJ I OPIS OBJEKTA:
Užas u špilju nalazi se u blizini izvora rijeke Omble. Užasni kanal u špilji je prostran, a nakon suženja špilja se nastavlja razvedenim kanalom. U špilji je vidljiva pukotina po kojoj je objekt nastao, ali kraj je zarušen (miniran) velikom količinom eksploziva (ostaci žica za miniranje, rupe i zarušeni materijal).

PRISTUP:
Od užasa u vodorinutištė uz žicu desno do jedva vidljivog tunela u škari. Kad se uđe u vidljivi desni kuloar krenuti 10 m po kuloaru pa 30 m desno preko stijena 5-7 m iznad špilje. Dobar orijentir su izgoreni čempresi. Ispod špilje isprano kamenje, nema vegetacije.

VRSTA: Špilja
MORFOLOŠKI TIP: Razveden
DUBINA: -3 m
VERTikalna razlika: 6 m
DULJINA: 58 m
VOLUMEN: 110 m³

KRŽAKERISTIČKE UZAS: Dva špiljska užas
HIDROGEOLOŠKA KRŽAKERISTIKA: Š povremena nakapnicom
HIDROLOŠKA FUNKCIJA: Bez funkcije

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA: Proširivanje

OBJEK ISTRAŽILI:
ADIPA, HBSD, Dinaridi DISKF, JK Kamnik

NAPOMENA:
Prikupljanje žuine i glijva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara. Na zidovima ima crveno označenih točaka mjerenja pa je pretpostavka da je špilja i prije nacrtna.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Špilja od Punta
ZEMLJOPISNA KARTA (1:25000): 625-3-4
LOKALITET: Močići, Čilipi, Konavle

POLOŢAJ I OPIS OBJEKTA:
Špilja se nalazi južno od Močića u predjelu na karti označenim s imenom Rudine. Špilja je oko metar od suhozida u grmu crnike (prosjekli ulaz). Špilja se sastoji od kosog kanala s nekoliko kraćih odvojaka.

Pristup:
Od glavne ceste skrenuti za Močiće, voziti glavnom cestom sve do paralelnog makadama iznad Konavskih stina. Tu parkirati i krenuti prema jugu uz suhozid.

VRSTA: Špilja
DUBINA: 7 m
DULJINA: 29 m
VOLUMEN: 250 m³

KARAKTERISTIKE ULAZA:
Teže uočljiv špiljski ulaz u grmu crnike

HIDROGEOLOŠKA KARAKTERISTIKA:
Suh

HIDROLOŠKA FUNKCIJA:
Bez funkcije

PERSPEKTIVE DALJNJIH ISTRAŢIVANJA:
Nema

OBJEKT ISTRAŢILI:
ADIPA, HBSD, SK Ursus spelaeus, JK Kamnik

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraţivanja, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Špilja Vrbočulje

ŽEMLJOPISNA KARTA (1:25000): 625-3-1

LOKALITET: Zaton, Dubrovnik

TOČNOST POLOŽAJA: GPS

POLOŽAJ I OPIS OBJEKTA:
Špilja se nalazi sjeverozapadno od Zatona i ima jamski ulaz, 1,30x0,60, zatim 5 m vertikala u dvoranu s puno siga.

PRISTUP:
U Zatonu nakon kafića Babilon oštro lijevo. Na vrhu brda prva cesta oštro lijevo dolje. Od tamo, 100 m u smjeru mora, po koordinatama, blizu dalekovoda (praktički ispod).

VRSTA: Špilja
MORFOLOŠKI TIP: Razveden

DUBINA: -12 m
DULJINA: 45 m
VERTIKALNA RAZLIKA: 12 m
VOLUMEN: 1400 m³

KARAKTERISTIKE ULAZA:

Jamski ulaz

HIDROGEOLOŠKA KARAKTERISTIKA:
Šuh s povremenom nakapnicom

HIDROLOŠKA FUNKCIJA:
Bez funkcije

PERSPEKTIVE DALJNIH ISTRAŽIVANJA:
Proširivanje

OBJEKT ISTRAŽILI:
ADIIPA, HBSD, SK Ursus spelaenus, Dinaridi DISKF

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Tunel na Srd</th>
<th>ZEMLJOPISNA KARTA (1:25000):</th>
<th>X = Koordinate se nalaze u bazama podataka speleoloških društava.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROJ PLOČICE:</td>
<td>069-024</td>
<td>Y =</td>
<td>Z =</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Srd, Bosanka, Dubrovnik</td>
<td>TOČNOST POLOŽAJA:</td>
<td>GPS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POLOŽAJ I OPIS OBJEKTA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunel se nalazi kod restorana na brdu Srd kod Dubrovnika neposredno uz cestu. Ulaz je lako uočljiv, a tunel se sastoji od jednostavne cijevi.</td>
</tr>
</tbody>
</table>

**PRISTUP:**

Kod restorana uz cestu u pravcu juga, oko 20 m. Nađi se na litarovom zemljislu.

<table>
<thead>
<tr>
<th>VRSTA :</th>
<th>Umjetni speleološki objekt</th>
<th>DUBINA :</th>
<th>-2 m</th>
<th>VERTIKALNA RAZLIKA :</th>
<th>2 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORFOLOŠKI TIP :</td>
<td>Jednostavan</td>
<td>DULJINA :</td>
<td>19 m</td>
<td>VOLUMEN:</td>
<td>76 m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KARAKTERISTIKE ULAZA :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lako uočljiv ulaz (3x2 m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIDROGEOLOŠKA KARAKTERISTIKA :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIDROLOŠKA FUNKCIJA :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bez funkcije</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERSPEKTIVE DALJINJIH ISTRAŽIVANJA :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nema</td>
</tr>
</tbody>
</table>

**OBJEKT ISTRAŽILI :**

ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac, Dinaridi DISKF

**NAPOMENA :**

Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
IME OBJEKTA: Tihinja špilja

ZEMLJOPISNA KARTA (1:25000): 624.1-4

LOKALITET: Kulina brdo, Rusan, Hodilje, V. Ston, Ston

POLOŽAJ I OPIS OBJEKTA:
Špilja ima mali otvor skriven pod stijenom. Pukotinskog je karaktera.

PRISTUP:
S ceste Malo Selo - Duba Stonška posije kapele Male Gospe skrenuti desno na stazu. Parkirati koordinatama i po koordinatama do špilje,

VRSTA: Špilja
MORFOLOŠKI TIP: Jednostavan

DUBINA: -11 m
DULJINA: 16 m

VERTIKALNA RAZLIKA: 11 m
VOLUMEN: 57 m³

KRATKE KARAKTERISTIKE ULAZA:
Teško uočljiv špiljski ulaz

HIDROGEOLOŠKA KARAKTERISTIKA:

HIDROLOŠKA FUNKCIJA:
Protočni

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:

OBJEKT ISTRAŽILI:
SO HPD Željezničar

NAPOMENA:
Prikupljanje faune, fotografiranje prostora i istraživanja
IME OBJEKTA: Velika peć 2
ŽEMLJOPISNA KARTA (1:25000): 625-4-4
LOKALITET: Dubravka, Konavle

TOČNOST POLOŽAJA: GPS

POLOŽAJ I OPIS OBJEKTA:
Špilja se nalazi istočno od mjesta Dubravka u predjelu zvanom Debela Ljut. Špilja ima jedan špiljski i dva jamska ulaza. Jedan jamski ulaz je zatran.

VRSTA: Špilja
DUBINA: 0 m
DULJINA: 22 m
VERTIKALNA RAZLIKA: 5 m
VOLUMEN: 368,85 m³

KARAKTERISTIKE ULAZA:
S prokapnicom

Lako uočljiv špiljski ulaz (7x3m) i dva jamska ulaza

HIDROGEOLOŠKA KARAKTERISTIKA:
Bez funkcije

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac, Dinaridi DISKF

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara. MANSKI SUMNJIVO PODRUČJE!
**KATASTARSKI LIST**
**SPELEOLOŠKOG OBJEKTA**

**IME OBJEKTA:**
Traverza kod Miljković staja

**ŽEMLJOPISNA KARTA (1:25000):**
624-2-1

**LOKALITET:**
Trmovica, Dubrovačko primorje

**TOČNOST POLOŢAJA:**
GPS

**POLOŢAJ I OPIS OBJEKTA:**
Špilja se nalazi kod Trnovice na području zvanom Miljković staje. Kod pristupa oprez jer se nalazi u blizini drţavne granice i na razminiranom području. Špilja je dobro prohodan kanal, traverza.

**VRSTA:**
Špilja

**DUBINA:**
-15 m

**DULJINA:**
143 m

**VERTIKALNA RAZLIKA:**
15 m

**VOLUMEN:**
4698,7 m³

**KARAKTERISTIKE ULAZA:**
Lako uočljiva dva špiljska ulaza

**HIDROGEOLOŠKA KARAKTERISTIKA:**
Š nakapnicom

**HIDROLOŠKA FUNKCIJA:**
Bez funkcije

**PERSEPTIVE DALJNJIH ISTRAŢIVANJA:**
Nema

**PRISTUP:**
Nakon Trnovice do kraja asfaltirane ceste, zatim po makadamu i 300 m prije granice skrene se lijevo pa oko 300 m po koordinatama.

**REDNI BROJ:**
22

**BROJ PLOČICE:**
03-0479

**NAPOMENA :**
Prikupljanje faune i gljiva, fotografiranje prostora i istraţivanja, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA:
Tunel iznad Šumeta 1

ŽEMLJOPISNA KARTA (1:25000):
625-3-2

LOKALITET:
Šumet, Dubrovnik

X = Koordinate se nalaze
Y = u bazama podataka
Z = speleoloških društava.

TOČNOST POLOŽAJA:
GPS

POLOŽAJ I OPIS OBJEKTA:
Ulag je lako uočljiv, a tunel se sastoji od jednostavnih cijevi.

PRISTUP:
Po cesti za Šumet samo ravno i s asfalta na betoniranu cestu, a s nje na makadam. Cijeli put je nekadašnja trasa uskotračne pruge.

VRSTA:
Umjetni speleološki objekt

MORFOLOŠKI TIP:
Jednostavan

DUBINA:
- 1 m

DULJINA:
76 m

VERTIKALNA RAZLIKA:
1 m

VOLUMEN:
1520 m³

KARAKTERISTIKE ULZA:
Lako uočljiv ulaz (4x4m)

HIDROGEOLOŠKA KARAKTERISTIKA:
Suh

HIDROLOŠKA FUNKCIJA:
Bez funkcije

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac

NAPOMENA:
Fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Tunel iznad Šumeta 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze</td>
</tr>
<tr>
<td>625-3-2</td>
<td>Y = u bazama podataka</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>speleoloških društava.</td>
</tr>
<tr>
<td>Šumet, Dubrovnik</td>
<td>Z =</td>
</tr>
<tr>
<td></td>
<td>TOČNOST POLOŽAJA:</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**

Ulez je lako uočljiv, a tunel se sastoji od jednostavne cijevi.

**PRISTUP:**

Po cesti za Šumet samo ravno i s asfalta na betoniranu cestu, a s nje na makadam. Cijeli put je nekadašnja trasa uskotračne pruge.

**VRSTA :** Umjetni speleološki objekt

**MORFOLOŠKI TIP :** Jednostavan

**DUBINA :** -11.7 m

**VERTIKALNA RAZLIKA :** 11.7 m

**DULJINA :** 274 m

**VOLUMEN :** 5480 m³

**KARAKTERISTIKE ULAZA :** Lako uočljiv ulaz (5x5m)

**HIDROGEOLOŠKA KARAKTERISTIKA :** Izvor u tunelu

**HIDROLOŠKA FUNKCIJA :** Protočni

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA :** Nema

**OBJEKT ISTRAŽILI :** ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac

**NAPOMENA :** Fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Tunel iznad Šumeta 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze u bazama podataka.</td>
</tr>
<tr>
<td>625-3-2</td>
<td>Y = speleoloških društava.</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Šumet, Dubrovnik</td>
</tr>
<tr>
<td>TOČNOST POLOŽAJA:</td>
<td>GPS</td>
</tr>
</tbody>
</table>

| REDNI BROJ : | 25 |
| BROJ PLOČICE : | |

**POLOŽAJ I OPIS OBJEKTA:**

Uzun je lako uočljiv, a tunel se sastoji od jednostavne cijevi.

---

**Pristup:**

Po cesti za Šumet samo ravno i s asfalta na betoniranu cestu, a s nje na makadam. Cijeli put je nekadašnja trasa uskotračne pruge.

**Vrsta:** Umjetni speleološki objekt

**Duljina:** 7,5 m

**Vertikalna razlika:** 0 m

**Volumen:** 152 m³

**Karakteristike ulaza:**

Lako uočljiv ulaz (4x4m)

**Hidrogeološka karakteristika:**

Suh

**Hidrološka funkcija:**

Bez funkcije

**Perspektive daljnjih istraživanja:**

Nema

---

**Objekti istražili:**

- ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac

**Napomena:**

Fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
IME OBJEKTA: Tunel iznad Šumeta 4

ZEMLJOPISNA KARTA (1:25000): 625-3-2

LOKALITET: Šumet, Dubrovnik

POLOŽAJ I OPIS OBJEKTA:
Ulaz je lako uočljiv, a tunel se sastoji od jednostavne cijevi.

NAPOMENA:
Objekt istražili: ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac

NAPOMENA:
Fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Tunel Mihanići 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>625-4-3</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Mihanići, Konavle</td>
</tr>
<tr>
<td>GPS POLOŽAJA:</td>
<td></td>
</tr>
</tbody>
</table>

**BROJ PLOČICE:**

- **Protočni**
- **Nema**

**POLOŽAJ I OPIS OBJEKTA:**

Ulez je lako uočljiv, a tunel se sastoji od jednostavne cijevi.

**NAPOMENA:**

Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.

---

**PRISTUP:**

Cestom za Pridvorje pa lijevo uzbrdo za Mihaniće. Do vrha sela prema konobi Mihanići, bivša željeznička stanica. Tunel Mihanići 1 odmah je iza bunkera iznad stanice.

**VRSTA:** Umjetni speleološki objekt

**MORFOLOŠKI TIP:** Jednostavan

**DUBINA:** -3 m

**DULJINA:** 430 m

**VERTIKALNA RAZLIKA:** 3 m

**VOLUMEN:** 8600 m³

**KARAKTERISTIKE ULAZA:**

- Lako uočljiv ulaz (4x5m)

**HIDROGEOLOŠKA KARAKTERISTIKA:**

- Izvor u tunelu, sa stalnom vodom

**HIDROLOŠKA FUNKCIJA:** Protočni

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:** Nema

---

**OBJEKT ISTRAŽILI:**

- ADIPA, Geonatura, HBSD, SK Ursus spelaeus, SO HPD Željezničar

---

**NAPOMENA:**

- Koordinate se nalaze u bazama podataka speleoloških društava.
**IME OBJEKTA:** Tunel Mihanići 2  
**ZEMLJOPISNA KARTA (1:25000):** 625-4-3  
**LOKALITET:** Mihanići, Konavle

**TOČNOST POLOŽAJA:** GPS

**POLOŽAJ I OPIS OBJEKTA:** Ulauf je lako uočljiv, a tunel se sastoji od jednostavnih cijevi.

**PRISTUP:** Cestom za Pridvorje pa lijevo uzbrdo za Mihaniće. Do vrha sela prema konobi Mihanići, bivša željeznička stanica. Tunel Mihanići 2 na markaciji za penjalište.

**VRSTA:** Umjetni speleološki objekt  
**DUBINA:** - 1 m  
**VERTIKALNA RAZLIKA:** 1 m

**MORFOLOŠKI TIP:** Jednostavan  
**DULJINA:** 38.2 m  
**VOLUMEN:** 764 m³

**KARAKTERISTIKE ULAZA:** Lako uočljiv ulaz (4x5m)

**HIDROGEOLOŠKA KARAKTERISTIKA:** Suh

**HIDROLOŠKA FUNKCIJA:** Bez funkcije

**PERSPEKTIVE DALJnjIH ISTRAŽIVANJA:** Nema

---

**OBJEKT ISTRAŽILI:** ADIPA, Geonatura, HBSD, SO HPK Sv.Mihovil

**NAPOMENA:** Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara. * Stvarna duljina prikazana na nacrtnu naknadno je ispravljena u programu Speleolit.
**KATASTARSKI LIST**
**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Tunel Mihanići 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze u bazama podataka, Y = speleoških društava.</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Mihanići, Konavle</td>
</tr>
<tr>
<td>POLOŽAJ I OPIS OBJEKTA:</td>
<td>Ulaž je lako uočljiv, a tunel se sastoji od jednostavne cijevi.</td>
</tr>
</tbody>
</table>

**PRISTUP:**
Cestom za Pridvorje pa lijevo uzbrdo za Mihaniće. Do vrha sela prema konobi Mihanići, bivša željeznička stanica. Tunel Mihanići 3 na markaciji za penjalište.

<table>
<thead>
<tr>
<th>VRSTA:</th>
<th>Umjetni speleološki objekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUBINA:</td>
<td>-4,4 m*</td>
</tr>
<tr>
<td>MORFOLOŠKI TIP:</td>
<td>Jednostavan</td>
</tr>
<tr>
<td>DULJINA:</td>
<td>253,3 m</td>
</tr>
<tr>
<td>VOLUMEN:</td>
<td>5066 m³</td>
</tr>
<tr>
<td>KARAKTERISTIKE ULAZA:</td>
<td>Lako uočljiv ulaz (4x5m)</td>
</tr>
<tr>
<td>HIDROGEOLOŠKA KARAKTERISTIKA:</td>
<td>Suh</td>
</tr>
<tr>
<td>HIDROLOŠKA FUNKCIJA:</td>
<td>Bez funkcije</td>
</tr>
<tr>
<td>PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:</td>
<td>Nema</td>
</tr>
</tbody>
</table>

**OBJEK ISTRAŽILI:**
ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil

**NAPOMENA:**
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara. *Dubina prikazana na nacrtu naknadno je ispravljena u programu Speleolit.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Tunel Konavosko polje-more</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>625-4-3</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Popovići, Gruda, Konavle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REDNI BROJ</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROJ PLOČICE</td>
<td></td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**

Tunel se nalazi u Konavoskom polju i služi za odvodnju oborinskih voda s polja prema moru. U tunelu je uvučen velik broj kaverni od kojih je u 4 moguć ulaz.

**POZICIONIRANJE:**

Koordinate se nalaze u bazama podataka speleoloških društava.

**TOČNOST POLOŽAJA:**

GPS

**Pristup:**

Parkirati na odmoriste s lijeve strane ceste nakon kafića iza mjesta Vignje. Pješke do prvog skretanja lijevo. Putem se spustiti dolje i skrenuti desno do ulaza u sjeverni portal tunela.

**PRISTUP:**

**Vrsta:** Umjetni speleološki objekt

**Dubina:** -22 m

**Vertikalna razlika:** 22 m

**Duljina:** 1967 m

**Volumen:** 23 902 m³

**MORFOLOŠKI TIP:** Razgranat

**Karakteristike ulaza:**

Lako uočljiv ulaz

**Hidrogeološka karakteristika:**

Protočni

**Hidrološka funkcija:**

Protočni

**Perspektive daljnjih istraživanja:**

Veći broj kaverni duž tunela

**Objekt istražili:**

ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac, Dinaridi DISKF, SO HPD Željezničar

**Napomena:**

Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**
**SPELEOLOŠKOG OBJEKTA**

**IME OBJEKTA:** Kaverna 167

**ZEMLJOPISNA KARTA (1:25000):** X = Koordinate se nalaze u bazama podataka.

**LOKALITET:** GPS

**POLOŽAJ I OPIS OBJEKTA:**
Kaverna se nalazi u tunelu koji se nalazi u Konavoskom polju i služi za odvodnju oborinskih voda s polja prema moru. Puno bleta

**VRSTA:** Kaverna

**DUBINA:** 0 m

**VOLUMEN:** 20 m³

**DULJINA:** 12 m

**VERTIKALNA RAZLIKA:** 8 m

**TOČNOST POLOŽAJA:** GPS

**POSTAVKE**:

**REDNI BROJ:** 31

**BROJ PLOČICE:**

**PRISTUP:**
Parkirati na odmorište s lijeve strane ceste nakon kafića iza mjesta Vignje. Pješke do prvog skretanja lijevo. Putem se spustiti dolje i skrenuti desno do ulaza u tunel. 167. metar tunela Konavsko polje-mor ako se ulazi sa strane Konavskog polja.

**KARAKTERISTIKE ULAZA:**

**MORFOLOŠKI TIP:** Jednostavan

**VERTIKALNA RAZLIKA:**

**NAPOMENA:**

**OBJEKT ISTRAŽILI:**
ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac, Dinaridi DISKF, SO HPD Željezničar

**NAPOMENA:**
Za ulazak potrebna 3 fix-a (8mm) i 7m špage ili ljestve 4-5 m
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>ZEMLJOPISNA KARTA (1:25000):</th>
<th>LOKALITET:</th>
<th>TOČNOST POLOŽAJA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaverna 180</td>
<td>625-4-3</td>
<td>Popović, Gruda, Konavle</td>
<td>GPS</td>
</tr>
</tbody>
</table>

**REDNI BROJ:** 32  
**BROJ PLOČICE:**

**ZEMLJOPISNA KARTA (1:25000):**
X = Koordinate se nalaze u bazama podataka speleoloških društava.  
Y = u bazama podataka  
Z =

**LOKALITET:**  
TOČNOST POLOŽAJA: GPS

**POLOŽAJ I OPIS OBJEKTA:**  
Kaverna se nalazi u tunelu koji se nalazi u Konavoskom polju i služi za odvodnju oborinskih voda s polja prema moru. Puno blata

**VRSTA:** Kaverna  
**DUBINA:** -17,7 m  
**VERTIKALNA RAZLIKA:** 22,6 m  
**DULJINA:** 76 m  
**VOLUMEN:** 450 m³

**VRSTA:** Kaverna  
**DUBINA:** -17,7 m  
**VERTIKALNA RAZLIKA:** 22,6 m  
**DULJINA:** 76 m  
**VOLUMEN:** 450 m³

**KARAKTERISTIKA ULAZA:**  
Maleni ulaz u zidu tunela odmah iznad poda

**HIDROGEOLOŠKA KARAKTERISTIKA:**  
Stalna voda na dnu

**HIDROLOŠKA FUNKCIJA:**  
Protočni

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:**  
Nema

**OBJEKT ISTRAŽILO:**  
ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac, Dinaridi DISKF, SO HPD Željezničar

**NAPOMENA:**  
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.

Pristup:
Parkirati na odmoriste s lijeve strane ceste nakon kafića iza mjesta Vignje. Pješke do prvog skretanja lijevo. Putem se spustiti dolje i skrenuti desno do ulaza u tunel. 180. metar tunela Konavsko polje-more ako se ulazi sa strane Konavoskog polja.
**KATASTARKI LIST**

### SPELEOLOŠKOG OBJEKTA

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Kaverna 183</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>625-4-3</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Popovići, Gruda, Konavle</td>
</tr>
<tr>
<td>BROJ PLOČICE:</td>
<td></td>
</tr>
<tr>
<td>TOČNOST POLOŽAJA:</td>
<td>GPS</td>
</tr>
<tr>
<td>REDNI BROJ :</td>
<td>33</td>
</tr>
</tbody>
</table>

#### POLOŽAJ I OPIS OBJEKTA:

Kaverna se nalazi u tunelu koji se nalazi u Konavoskom polju i služi za odvodnju oborinskih voda s polja prema moru. Puno blata.

#### PRISTUP:

Parkirati na odmoriste s lijeve strane ceste nakon kafića iza mjesta Vignje. Pješke do prvog skretanja lijevo. Putem se spustiti dolje i skrenuti desno do ulaza u tunel. 183. metar tunela Konavosko polje-more ako se ulazi sa strane Konavoskog polja.

#### VRSTA :

- Kaverna

#### MORFOLOŠKI TIP :

- Razvoden

#### DUBINA :

- 0 m

#### DULJINA :

- 99 m

#### VOLUMEN:

<table>
<thead>
<tr>
<th>Kaverna</th>
<th>1180 m³</th>
</tr>
</thead>
</table>

#### KARAKTERISTIKE ULAZA :

- Maleni ulaz između betonskog luka i stropa tunela (visina oko 5 m)

#### HIDROGEOLOŠKA KARAKTERISTIKA :

#### HIDROLOŠKA FUNKCIJA :

- Protočni

#### PERSPEKTIVE DALJNJIH ISTRAŽIVANJA :

- Nema

#### OBJEKT ISTRAŽILI:

- ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac, SO HPD Željezničar

#### NAPOMENA:

Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Kaverna 781
ZEMLJOPISNA KARTA (1:25000): 625-4-3
LOKALITET: Popovići, Gruda, Konavle

POLOŢAJ I OPIS OBJEKTA:
Kaverna se nalazi u tunelu koji se nalazi u Konavskom polju i služi za odvodnju oborinskih voda s polja prema moru. Puno blata.

PRISTUP:
Parkirati na odmorište s lijeve strane ceste nakon kafića iza mjesta Vignje. Pješke do prvog skretanja lijevo. Putem se spustiti dolje i skrenuti desno do ulaza u tunel. 781. metar tunela Konavsko polje-more ako se ulazi sa strane Konavskog polja.

VRSTA: Kaverna
MORFOLOŠKI TIP: Razveden
DUBINA: 0 m
DULJINA: 142 m
VERTIKALNA RAZLIKA: 16.5 m
VOLUMEN: 1346.6 m³

KARAKTERISTIKE ULAZA:
Maleni ulaz u zidu tunela odmah iznad poda

HIDROGEOLOŠKA KARAKTERISTIKA:
Š povremenom nakapnicom

HIDROLOŠKA FUNKCIJA:
Protočni

PERSPEKTIVE DALJNJIH ISTRAŢIVANJA:
Nema

OBJEKT ISTRAŢILI:
ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac, Dinaridi DISKF, SO HPD Željezničar

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA:

ŽEMLJOPISNA KARTA (1:25000):

LOKALITET:
Bosanka, Dubrovnik

REDNI BROJ: 35
BROJ PLOČICE: 069-043

X = Koordinate se nalaze u bazama podataka speleoloških društava.
Y = gleba
Z = TOČNOST POLOŽAJA: GPS

IME OBJEKTA: IME OBJEKTA: IME OBJEKTA: IME OBJEKTA: IME OBJEKTA:

VRSTA: Špilja
DUBINA: -4,5 m
DULJINA: 25 m

POLOŽAJ I OPIS OBJEKTA:
Špilja s 4x2m ulazom koso dolje jednostavnim špiljskim kanalom do zida. Špilja je lijepo zasigana.

ZAKONSTRIKE ULAZA:

KARAKTERISTIKE ULAZA:
Lako uočljiv špiljski ulaz

KARAKTERISTIKE ULAZA:

MORFOLOŠKI TIP:
Jednostavan

HIDROGEOLOŠKA KARAKTERISTIKA:
Šuho s povremenom nakapnicom

HIDROGEOLOŠKA FUNKCIJA:
Bez funkcije

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
ADIPA, HBSD, SK Ursus spelaeus

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA:
Vilina špilja-izvor Ombla sustav

ZEMLJOPISNA KARTA (1:25000):
625-3-2

LOKALITET:
Ombra, Dubrovnik

TOČNOST POLOŽAJA:
GPS

POLOŽAJ I OPIS OBJEKTA:
Ulaz u špilju nalazi se u stijeni iznad Omble. Sustav Vilina špilja-izvor Omble razgranati je sustav na tri etaže.

PRISTUP:
Najbolji i najbrži put do špiljskog sustava Vilina špilja-Ombla je iz smjera Mokošice za koju se odvoji kod Dubrovačkog mosta. Ulaz Vilina špilja nalazi se u stijeni oko 130m iznad izvora. Prema Vilinjoj špilji potrebno je krenuti od sjevernih vrata pa proći po lošoj oputini uzbrodo ispod borova pa uz stijene do mjesta gdje se može normalno kroz usjek popeti na mali krški plato te spustiti do ulaza u špilju. Ispred ulaza je mala zaravan s livadom. Uspon traje malo više od 1h.

VRSTA:
Špilja
DUBINA:
min - 191 m
VERTIKALNA RAZLIKA:
229 m

MORFOLOŠKI TIP:
Razveden
DULJINA:
min 3050 m
VOLUMEN:
105244m³

KARAKTERISTIKE ULZA:
Špiljski ulaz visoko u stijeni

HIDROGEOLOŠKA KARAKTERISTIKA:
Izvor, jezera

HIDROLOŠKA FUNKCIJA:
Akumulacija, protočni

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Potrebno ponoviti i nadopuniti nacrt

OBJEKST ISTRAŽILI:

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara, geološka opažanja i mjerenja slojeva, tektonske potinje i rasjeda. *Navedena dubina i duljina odnose se na sad istražene dijelove sustava.
**KATASTARSKI LIST**
**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Vrana jama</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze</td>
</tr>
<tr>
<td>624-1-3</td>
<td>Y = u bazama podataka</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Z = speleoloških društava.</td>
</tr>
<tr>
<td>Ponikve, Pelješac, Ston</td>
<td>TOČNOST POLOŽAJA: GPS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REDNI BROJ :</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROJ PLOČICE :</td>
<td>03-0471</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**

Jama se nalazi na poluotoku Pelješcu sjeverno od Sparagovića, Ponikve. Jama ima otvor oko 20x15m, krušljiva vertikala, a onda sipar do dna. Ima jedan uzlazni kanal od oko 20 m.

**PRISTUP:**

Od Ponikava autom po pristupnom putu prema vjetroelektrani do vjetroagregata br. 9. Tu parkirati i po azimutu oko 20 minuta u smjeru SI.

<table>
<thead>
<tr>
<th>VRSTA :</th>
<th>Jama</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORFOLOŠKI TIP :</td>
<td>Jednostavan</td>
</tr>
<tr>
<td>DUBINA :</td>
<td>-63 m</td>
</tr>
<tr>
<td>VERTikalna razlika :</td>
<td>63 m</td>
</tr>
<tr>
<td>DULJINA :</td>
<td>114 m</td>
</tr>
<tr>
<td>VOLUMEN:</td>
<td>21 189 m³</td>
</tr>
</tbody>
</table>

**KARAKTERISTIKE ULAZA :**

Lako uočljiv veliki jamski ulaz (20x15m)

**HIDROGEOLOŠKA KARAKTERISTIKA :**

Š povremenom nakapnicom

**HIDROLOŠKA FUNKCIJA :**

Bez funkcije

**PERSPEKTIVE DALJNIH ISTRAŽIVANJA :**

Na dnu u lijevom boku, oko 20m od dna, kanal kojeg treba ispenjati.

**OBJEKT ISTRAŽILI :**

ADIPA, Geonatura, HBSD, SO HPK Sv.Mihovil, SD Karlovac, SO HPD Željezničar

**NAPOMENA :**

Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**IME OBJEKTA:** Velika jama povije Tornja

**ZEMLJOPISNA KARTA (1:25000):** 624-1-2

**LOKALITET:** Vidonje, Metković, Zažablje

**POLOŽAJ I OPIS OBJEKTA:**

- **VRSTA:** Jama
- **DUBINA:** Razveden
- **DULJINA:** 328 m
- **VOLUMEN:** 34 568 m³

**NAPOMENA:**

- Počeci proširenja jame su na sjeveru i sjeveroistoku.
- Interesantna izolovana jama.
- U zaseokima Goračići, pod vrhom Toranj u blizini Vidonja.
- Od ulaza stromom kosinom (oko 80 stupnjeva) spušta se na sipar kojim se dolazi do najdubljeg dijela jame.

**PRISTUP:**

- Proći pokraj crkvice i groblja u Vidonjama te parkirati kod male kapelice koja se nalazi s lijeve strane ceste. Pješke zaobići kanjon i po izohipsi prema koordinatama. 20 minuta do jame.

**POLOŽAJ I OPIS OBJEKTA:**

- **POLOŽAJ I OPIS OBJEKTA:**
  
  - **VRSTA:** Jama
  - **DUBINA:** Razveden
  - **DULJINA:** 328 m
  - **VOLUMEN:** 34 568 m³

**VRSTA:** Jama

**MORFOLOŠKI TIP:** Razveden

**VERTIKALNA RAZLIKA:**

**Jama je smještena iznad zaseoka Goračići pod vrhom Toranj u blizini Vidonja. Od ulaza stromom kosinom (oko 80 stupnjeva) spušta se na sipar kojim se dolazi do najdubljeg dijela jame.**

**KARAKTERISTIKE ULaza:**

- **Špiljski ulaz sa strmim spuštanjem u vertikalu (7x4m)**

**HIDROGEOLOŠKA KARAKTERISTIKA:**

- **Povremeno stajaća voda**

**HIDROLOŠKA FUNKCIJA:**

- **Povremeno protočna**

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:**

- **Istraživanje špiljskih staništa i izvorišnih područja šireg dubrovačkog područja s ciljem vrednovanja bioraznolikosti i ocjena prihvatljivosti izgradnje hidroenergetskih objekata**

**REDNI BROJ :** 38

**BROJ PLOČICE :** 03-0473

**TOČNOST POLOŢAJA:** GPS

**OBJEKT ISTRAŽILI :**

- ADIPA, Geonatura, HBSD, SO PD Dubovac, SD Karlovac, SO HPK Sv. Mihovil, SO HPD Željeznica

**NAPOMENA :**

- Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara, Chiroptera. Za prolaz jame potrebno je 100 i 50 metarsko uže i 10 fix-eva 8mm.
**KATASTARKI LIST**
**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Špilja 1 u uvali Hodoblja</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROJ PLOČICE:</td>
<td>03-0474</td>
</tr>
<tr>
<td>ŻEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze u bazama podataka speleoloških društava.</td>
</tr>
<tr>
<td>Y =</td>
<td></td>
</tr>
<tr>
<td>Z =</td>
<td></td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Zaton Doli, Dubrovačko primorje</td>
</tr>
<tr>
<td>TOČNOST POLOŽAJA:</td>
<td>GPS</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**
Špilja se nalazi u uvali Hodoblja i u nju se ulazi s mora.

**PRISTUP:**
U mjestu Zaton Doli skrenuti s Jadranske magistrale prema uvali Doli. Parkirati auto kod plaže i prema koordinatama hodati uz obalu do špilje.

**VRSTA:**
Špilja

**MORFOLOŠKI TIP:**
Jednostavan

**DUBINA:**
0 m

**DULJINA:**
55 m

**VERTIKALNA RAZLIKA:**
12 m

**VOLUMEN:**
1170 m³

**KARAKTERISTIKE ULAZA:**
Špiljski ulaz s mora

**HIDROGEOLOŠKA KARAKTERISTIKA:**
Š nkapnicom

**HIDROLOŠKA FUNKCIJA:**

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:**
Nema

**OBJEKT ISTRAŽILI:**
Geonatura, SO HPK Sv. Mihovil, SO HPD Željezničar

**NAPOMENA:**
Prikupljanje faune, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara, Chiroptera.
**KATASTARSKI LIST**  
**SPELEOLOŠKOG OBJEKTA**

**IME OBJEKTA:**  
Pasja jama

**ZEMLJOPISNA KARTA (1:25000):**  
624-4-2

**LOKALITET:**  
Brsečine, Dubrovnik

**TOČNOST POLOŽAJA:**  
GPS

**POLOŽAJ I OPIS OBJEKTA:**  
Jednostavan objekt jamskog karaktera, dubine 8 m.

**PRISTUP:**  
U Trstenu s Jadranske magistrale skrenuti za Brsečine i nakon toga po koordinatama do jame.

**VRSTA:**  
Jama

**MORFOLOŠKI TIP:**  
Jednostavan

**DUBINA:**  
8 m

**VERTIKALNA RAZLIKA:**  
8 m

**DULJINA:**  
9 m

**VOLUMEN:**  
48 m³

**KARAKTERISTIKE ULAZA:**  
Jamski ulaz

**HIDROGEOLOŠKA KARAKTERISTIKA:**  
Suh

**HIDROLOŠKA FUNKCIJA:**  
Bez funkcije

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:**

**OBJEKT ISTRAŽILI:**

ADIPA, Geonatura, HBSD, Dinaridi DISKF, SK Ursus spelaeus

**NAPOMENA:**  
Prikupljanje faune, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**IME OBJEKTA:**
Jama na vrh Krčevina

**ZEMLJOPISNA KARTA (1:25000):**
625-3-1

**LOKALITET:**
Orasac, Dubrovnik

**TOČNOST POLOŽAJA:**
GPS

**IME OBJEKTA:**
Jama na vrh Krčevina

**ŽEMLJOPISNA KARTA (1:25000):**
625-3-1

**LOKALITET:**
Orasac, Dubrovnik

**TOČNOST POLOŢAJA:**
GPS

**POLOŢAJ I OPIS OBJEKTA:**

**POLOŢAJ I OPIS OBJEKTA:**

**PRISTUP:**

**VRSTA:**
Jama

**MORFOLOŠKI TIP:**
Razveden

**DUBINA :**
- 21 m

**VERTIKALNA RAZLIKA :**
21 m

**DULJINA :**
33 m

**VOLUMEN:**
115 m³

**KARAKTERISTIKE ULAZA :**
Jamski i šipjski ulaz. Jamski ulaz zatvoren.

**HIDROGEOLOŠKA KARAKTERISTIKA :**
Suh

**HIDROLOŠKA FUNKCIJA :**
Bez funkcije

**PERSPEKTIVE DALJNJIH ISTRAŢIVANJA :**
Neprohodna uska pukotina na dnu.

**OBJEKT ISTRAŢILI :**
ADIPA, Geonatura, HBSD, SK Ursus spelaeus, SO HPK Sv. Mihovil, SO HPD Željezničar

**NAPOMENA :**
Prikupljanje faune, fotografiranje prostora i istraţivanja, mjerenje mikroklimatskih parametara, Chiroptera
**KATASTARKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>ZEMLJOPISNA KARTA (1:25000):</th>
<th>LOKALITET:</th>
<th>TOČNOST POLOŢAJA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jama na vrh Prodoli</td>
<td>625-3-1</td>
<td>Ljubač, Gromača, Dubrovnik</td>
<td>GPS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REDNI BROJ:</th>
<th>BROJ PLOČICE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>042-090</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POLOŢAJ I OPIS OBJEKTA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamski ulaz kroz koji se može spustiti i bez užeta, ali je uzak prolaz. Prva gornja dvorana suha s dosta svjetlosti, a druga dvorana vlažna, bez svjetla te je bogatija podzemnom faunom.</td>
</tr>
</tbody>
</table>

**PRISTUP:**

Od Gromača prema Ljubaču na zavoju prije spusta. Ide se do suhozida i skrene lijevo prema Ljubaču. Zaobidu se ruševine pa po stijenama prema koordinatama.

<table>
<thead>
<tr>
<th>VRSTA:</th>
<th>MORFOLOŠKI TIP:</th>
<th>DUBINA:</th>
<th>VERTIKALNA RAZLIKA:</th>
<th>DULJINA:</th>
<th>VOLUMEN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jama</td>
<td>Jednostavan</td>
<td>-6,5 m</td>
<td>6,5 m</td>
<td>8 m</td>
<td>50 m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KARAKTERISTIKE ULAZA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamski ulaz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIDROGEOLOŠKA KARAKTERISTIKA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIDROLOŠKA FUNKCIJA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bez funkcije</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERSPEKTIVE DALJNIH ISTRAŢIVANJA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nema</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBJEKT ISTRAŢILI:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SO HPD Željezničar, SO PD Dubovac</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAPOMENA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.</td>
</tr>
</tbody>
</table>
**IME OBJEKTA:**
Jama u Zabiradu

**ZEMLJOPISNA KARTA (1:25000):**
625-3-1

**LOKALITET:**
Osojnik, Dubrovnik

**POLOŽAJ I OPIS OBJEKTA:**
Jama oko 30 m u stijeni, otvor jame teško vidljiv jer se nalazi u urušenju kamenja.

**VRSTA:**
Jama

**DUBINA:**
-87 m

**DULJINA:**
90 m

**VERTikalna razlika:**
90 m

**VOLUMEN:**
4645 m³

**MORFOLOŠKI TIP:**
Jednostavan

**KARAKTERISTIKE ULAZA:**
Teško vidljiv jamski ulaz

**HIDROGEOLOŠKA KARAKTERISTIKA:**
Š pivremenom prokapnicom

**HIDROLOŠKA FUNKCIJA:**
Bez funkcije

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:**
Nekoliko upitnika

---

**OBJEKTI ISTRAŽILI:**
SD Spelunka, ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SO HPD Željezničar, Dinaridi DISKF, SD Karlovac

**NAPOMENA:**
Prikupljanje faune, fotografiranje prostora i istraživanja
IME OBJEKTA: Jama za Rasohama

ZEMLJOPISNA KARTA (1:25000):

LOKALITET:
Gumanca, Siano, Dubrovačko primorje

IME OBJEKTA: Jama za Rasohama

ZEMLJOPISNA KARTA (1:25000):

LOKALITET:
Gumanca, Siano, Dubrovačko primorje

POLOŽAJ I OPIS OBJEKTA:
Jama se nalazi u blizini starog markantnog hrasta ispod grebena koji je ujedno i državna granica. U jami su dva skoka. Prvi je 5 metara, a drugim se spušta vertikalnom u dvoranu veličine 10x15m.

PRISTUP:

VRSTA: Jama
DUBINA: -29 m
DULJINA: 38 m
VOLUMEN: 4015 m³

KARAKTERISTIKE ULAZA:
Jamski ulaz

HIDROGEOLOŠKA KARAKTERISTIKA:
Š povremenom prokapnicom

HIDROLOŠKA FUNKCIJA:
Bez funkcije

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
SD Spelunka, ADIPA, Geonatura, HBSD, SO HPK Sv. Mihovil, SD Karlovac

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Debela ljuća špilja</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPIŠNA KARTA (1:25000):</td>
<td>625-3-1</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Ljubač, Dubrovnik</td>
</tr>
<tr>
<td>TOČNOST POLOŽAJA:</td>
<td>GPS</td>
</tr>
<tr>
<td>ZOZVOD:</td>
<td>Koordinate se nalaze u bazama podataka speleoloških društava.</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**

Mali ulaz udaljen 30 m od dalekovoda, kroz koji se spušta na noge koso u špilju.

**PRISTUP:**

Od Gromače prema Ljubaču na zavoju prije spusta, desnom grebenskom stazom do dalekovoda. Od dalekovoda oko 50 m istom stazom pa spust prema drugom stupu koji se nalazi na pola brda. Mali ulaz 30 m prije dalekovoda.

<table>
<thead>
<tr>
<th>VRSTA :</th>
<th>Špilja</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORFOLOŠKI TIP :</td>
<td>Razveden</td>
</tr>
<tr>
<td>DUBINA :</td>
<td>-54 m</td>
</tr>
<tr>
<td>VERTIKALNA RAZLIKA :</td>
<td>54 m</td>
</tr>
<tr>
<td>VOLUMEN:</td>
<td>3150 m³</td>
</tr>
</tbody>
</table>

**KARAKTERISTIKE ULAZA :**

Mali špiljski ulaz

**HIDROGELOŠKA KARAKTERISTIKA :**

Š prokapnicom

**HIDROLOŠKA FUNKCIJA :**

Akumulacija

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA :**

Lijevo na dnu prolaz koji je koristio šišmiš

**OBJEKT ISTRAŽILI :**

SO PDS “Velebit”, ADIPA, Geonatura, SD Karlovac, Dinaridi DISKF

**NAPOMENA :**

Prikupljanje faune i gljiva, fotografinje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA:
Kukova peć

ZEMLJOPIRNA KARTA (1:25000):
624-4-2

LOKALITET:
Majkovi, Dubrovnik

POLOŽAJ I OPIS OBJEKTA:

PRISTUP:
Krene se od gornje ceste Trsteno-Majkovi uz drugi brijeg na Sl. Hoda se južnom padinom brijega prema koordinatama. Na putu postoji ograda s lancem.

VRSTA:
Špilja

DUBINA:
-22 m

DULJINA:
81 m

VOLUMEN:
3592 m³

KARAKTERISTIKE ULAZA:
Špiljski ulaz

HIDROGEOLOŠKA KARAKTERISTIKA:

HIDROLOŠKA FUNKCIJA:

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Ponoviti istraživanja - uočena je bogata fauna te zanimljiva arheologija

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

**IME OBJEKTA:** Aragonka špilja

**ZEMLJOPISNA KARTA (1:25000):** 625-3-1

**LOKALITET:** Ljubač, Dubrovnik

**VRSTA:** Špilja

**DUBINA:** -21 m

**DULJINA:** 260 m

**Razveden**

**VOLUMEN:** 25 956 m³

**POLOŽAJ I OPIS OBJEKTA:**

**PRISTUP:**

Od Gromače prema Ljubaču na zavoju prije spusta, desnom grebenskom stazom do dalekovoda. Od dalekovoda desno po suhozidu oko 15 minuta. Zaobići vrt te 300 m nakon toga skrenuti lijevo, nizbrdo prema Ljubačkom polju u smjeru oko 30 m od vrha.

**VRSTA:** Špilja

**MORFOLOŠKI TIP:** Razveden

**DUBINA:** -21 m

**DULJINA:** 260 m

**VERTikalna razlika:** 43 m

**VOLUMEN:** 25 956 m³

**KARAKTERISTIKE ULAZA:** Špiljski ulaz

**HIDROGEOLOŠKA KARAKTERISTIKA:**

**HIDROLOŠKA FUNKCIJA:**

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:** Penjanje

**OBJEKT ISTRAŽILI:** SD Spelunka, ADIPA, Dinaridi DISKF, SD Karlovac

**NAPOMENA:** Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Bezdanika

ZEMLJOPISNA KARTA (1:25000):
625-4-3

ZABRANJEN

LOKALITET:
Komaji, Konavle

TOČNOST POLOŽAJA: GPS

POLOŽAJ I OPIS OBJEKTA: Jama je postavljena fix-evima 8mm. Za ulaz treba 50m užeta. Za penjanje (uzlazni dio) treba 30m te nakon toga još 10m. Zatim za skok (silazni dio) oko 100m užeta. Dolje treba 2x15m užeta i veći tim za sakupljanje faune jer je objekt velikih dimenzija, razveden i s mnogo dvorana. Prolaz treba urušiti (probiti) jer se čuje jeka i postoji cirkulacija zraka, moguće je da se objekt nastavlja i potrebno ga je još istraživati. Prijedeno oko 100m horizontalno.

PRISTUP:
Postoje dva skretanja (cesti), ali se ide drugom cestom desno od table Komaji. Cesta je preko puta restorana i vodi uzbrdo. Ida se do početka sela, skrene se desno cestom kroz selo. Parkirati kod lijevog zavoja prije zadnje kuće u selu. Od zavoja se hoda 30 m uzbrdo cestom. Uđe se lijevo u šumu. Postoji vidljiv put od prijašnjih istraživanja. Tim putem oko 5 minuta hoda i onda po koordinatama.

VRSTA: Jama
MORFOLOŠKI TIP: Razveden
DUBINA: - m
DULJINA: - m
VERTIKALNA RAZLIKA: - m
VOLUMEN: - m³

KARAKTERISTIKE ULAZA:
Jamski ulaz

HIDROGEOLOŠKA KARAKTERISTIKA:
Povremeno potopljen dio jame

HIDROLOŠKA FUNKCIJA:
Ponor, akumulacija

PERSPEKTIVE DALJINJIH ISTRAŽIVANJA:
Perspektivna jama

OBJEKT ISTRAŽILI:
ADIPA, Geonatura, Dinaridi DISKF, SO HPD Željezničar, SD Karlovac

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara. Nema nacrta.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Banova ljut špilja

ŽEMLJOPISNA KARTA (1:25000): 625-3-1

LOKALITET: Ljubač, Dubrovnik

POLOŽAJ I OPIS OBJEKTA:

VRSTA: Špilja
DUBINA: -25 m
37 m

Razveden

DULJINA: 306 m

VOLUMEN: 15 450 m³

NAPOMENA: ADIPA, HBSD, SD Ursus spelaeus

Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.

PRISTUP:
S Jadranške magistrale smjer Trsteno-Orašac skrenuti u Orašcu prema Gromači i voziti oko 3km do raskrižja na kojem skrenuti desno prema mjestu Ljubač. Prema koordinatama se krene s ceste nizbrdo oko 50m.

VRSTA: Špilja
MORFOLOŠKI TIP: Razveden

KARAKTERISTIKE ULAZA:

HIDROGEOLOŠKA KARAKTERISTIKA:

HIDROLOŠKA FUNKCIJA:

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:

OBJEKT ISTRAŽILI:
ADIPA, HBSD, SD Ursus spelaeus

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Jama Zadubravica</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze u bazama podataka</td>
</tr>
<tr>
<td>BROJ PLOČICE:</td>
<td>624-2-4</td>
</tr>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>Y = u bazama podataka</td>
</tr>
<tr>
<td>BROJ PLOČICE:</td>
<td>Z = speleoloških društava.</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Dubravica, Riđica, Dubrovačko primorje</td>
</tr>
<tr>
<td>TOČNOST POLOŢAJA:</td>
<td>GPS</td>
</tr>
<tr>
<td>REDNI BROJ :</td>
<td>50</td>
</tr>
<tr>
<td>BROJ PLOČICE:</td>
<td>05-228</td>
</tr>
</tbody>
</table>

**POLOŢAJ I OPIS OBJEKTA:**

Na 40 metara dubine nalazi se velika polica prekrivena kamenjem. Na mjestu razdvajanja polica i vertikale treba tehnički penjati za nastavak istraživanja. Jama se nastavlja kosinom u dubinu i dolazi u prostranu dvoranu u kojoj ima guana.

**PRISTUP:**

Od prijevoja Riđica-Majkove produžiti makadamskim putem koji nakon 500 m postane prohodan samo za pješačenje te se spustiti do stupa od dalekovoda. Od dalekovoda pratiti kamenu ogradu s čije desne strane ide staza koja ide uzbrdo. Jama je blizu nakon što se sa staze dođe na platо.

**VRSTA :** Jama

**DUBINA :** -108 m

**VERTIKALNA RAZLIKA :** 108 m

**DULJINA :** 111 m

**VOLUMEN :** 22 550 m³

**MORFOLOŠKI TIP :** Razveden

**KARAKTERISTIKE ULAZA :**

Jamski ulaz u stijenama

**HIDROGEOLOŠKA KARAKTERISTIKA :**

Š povremenom nakapnicom

**HIDROLOŠKA FUNKCIJA :** Bez funkcije

**PERSPEKTIVE DALJNJIH ISTRAŢIVANJA :**

Na 40 m polica s koje treba tehnički penjati za nastavak istraživanja

**OBJEKT ISTRAŢILI :**

ADIPA, Geonatura, SO HPD Željezničar, SO HPK Sv. Mihovil, SD Karlovac, SO PDS Velebit

**NAPOMENA :**

Prikupljanje faune, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara, Chiroptera
**KATASTARSKI LIST**
**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Špilja ispod Krsta</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOKALITET:</td>
<td>Lozica, Pobrežje, Dubrovnik</td>
</tr>
<tr>
<td>TOČNOST POLOŢAJA:</td>
<td>GPS</td>
</tr>
</tbody>
</table>

**POLOŢAJ I OPIS OBJEKTA:**

**VRSTA:** Špilja
**DUBINA:** -21.5 m
**DULJINA:** 50 m
**VERTIKALNA RAZLIKA:** 21.5 m
**VOLUMEN:** 1300 m³

**Živopisni detalji:**

- Na špiljskom ulazu dva suhozida i jedna stepenica od oko 40 cm. Špilja ima dva ulaza, špiljski i jamski. Špiljski ulaz je zarastao u kupine dok je jamski ulaz udaljen oko 15 metara od špiljskog ulaza.

**PRISTUP:**

Od strane Mokošice, kad se produ serpentine, prije Petrovog brda lijevo. Do kraja staze po koordinatama.

**VRSTA:** Špilja
**MORFOLOŠKI TIP:** Jednostavan
**DUBINA:** -21.5 m
**DULJINA:** 50 m
**VERTIKALNA RAZLIKA:** 21.5 m
**VOLUMEN:** 1300 m³

**KARAKTERISTIKE ULAZA:** Špiljski i jamski ulaz

**HIDROGEOLOŠKA KARAKTERISTIKA:**

**HIDROLOŠKA FUNKCIJA:**

**PERSPEKTIVE DALJNJIH ISTRAŢIVANJA:** Nema

**OBJEKT ISTRAŢILI:**

ADIPA, HBSD, Dinaridi DISKF, SO PD Dubovac

**NAPOMENA:**

Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**IME OBJEKTA:**
Jama uz stazu na Sv. Nikoli

**ZEMLJOPISNA KARTA (1:25000):**
625-3-1

**LOKALITET:**
Orašac, Dubrovnik

**TOČNOST POLOŽAJA:**
GPS

**REDNI BROJ :** 52

**BROJ PLOČICE :** 042-50

---

**POLOŽAJ I OPIS OBJEKTA:**
Jednostavan speleološki objekt koji je gotovo u cijelosti osvijetljen dnevnim svjetlom. Nalazi se pored staze.

**PRISTUP:**
Ide se od Orašca prema Ljubaču. Dođe se do skretanja za Sv. Nikolu (označena staza). Nastavi se naprijed cestom oko 30m zatim se krene uzbrdo desnom stranom uz maslinik pa serpentinama do špilje. Kad se popne na platou uoči se špilja koja je uz stazu.

**VRSTA:** Špilja

**DUBINA:** -7,6 m

**VERTIKALNA RAZLIKA:** 7,6 m

**DULJINA:** 32 m

**VOLUMEN:** 510 m³

**KARAKTERISTIKE ULAZA:**
Špiljski ulaz koji se vidi s puta

**HIDROGEOLOŠKA KARAKTERISTIKA:**

**HIDROLOŠKA FUNKCIJA:**
Bez funkcije

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:**
Nema

---

**OBJEKT ISTRAŽILI :**
ADIPA, HBSD, SD Karlovac

**NAPOMENA :**
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Pećina u Gaju

ZEMLJOPISNA KARTA (1:25000): 625-3-1

LOKALITET: Osojnik, Dubrovnik

TOČNOST POLOŽAJA: GPS

POLOŽAJ I OPIS OBJEKTA: Jednostavan speleološki objekt. Ulaz dimenzija 1.5x1m.

Jednostavan speleološki objekt. Ulaz dimenzija 1.5x1m.

VRSTA: Špilja

DUBINA: -4m

VERTIKALNA RAZLIKA: 4m

DULJINA: 20m

VOLUMEN: 126m³

KARAKTERISTIKE ULAZA:
Teško uočljiv špiljski ulaz zbog šikare 1.5x1

HIDROGEOLOŠKA KARAKTERISTIKA:

S povremenom nakapnicom

HIDROLOŠKA FUNKCIJA:
Bez funkcije

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

STARI BROJ: 042-92

REDNI BROJ: 53

BROJ PLOČICE: Bez funkcije

PRISTUP:
Cestom od Osojnika, na prvom križanju skrenuti desno i voziti oko 1km. Kojih 200m od špilje parkirati auto pored ceste i popeti u brdo do ulaza isključivo po GPS koordinatama.

OBJEKT ISTRAŽILI:
ADIIPA, Geonatura, HBSD, SO HPD Željezničar, SO HPK Sv. Mihovil, SO PD Dubovac

NAPOMENA:
Prikupljanje faune, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
SPELEOLOŠKI OBJEKTA

KATASTARSKI LIST

IME OBJEKTA:
Bunar na zemlji Ilije Plečaša

ZEMLJOPISNA KARTA (1:25000):
574-3-3

LOKALITET:
Momići, Kula Norinska, Metković

TOČNOST POLOŽAJA:
GPS

POLOŽAJ I OPIS OBJEKTA:

PRISTUP:
Bunar se nalazi uz samu cestu u selu Momići koje je udaljeno 3 km od Kule Norinske. Bunar se nalazi na zemlji gospodina Ilije Plečaša.

VRSTA:
Bunar

MORFOLOŠKI TIP:
Jednostavan

DUBINA:
- 1,1 m

VERTIKALNA RAZLIKA:
1,1 m

DULJINA:
2,8 m

VOLUMEN:
6,2 m³

KARAKTERISTIKE ULAZA:
Neuređen ulaz, urušava se

HIDROGEOLOŠKA KARakteristika:
Stajno potopljeno

HIDROLOŠKA FUNKCIJA:
Izvor

PERSPEKTIVE DALJINJH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
SO HPD Željezničar, Breganja, DIK Freatik, SD Đula Medvedica

NAPOMENA:
IME OBJEKTA: Izvor na zemlji Grge Jurića

ZEMLJOPIŠNA KARTA (1:25000): 574-3-3

LOKALITET: Momići, Kula Norinska, Metković

POLOŽAJ I OPIS OBJEKTA:

MOMIĆI, KULA NORINSKA, METKOVić

VRSTA: Izvor

DULJINA: 2 m

VOLUMEN: 2 m³

DUBINA: -1 m

VERTIKALNA RAZLIKA: 1 m

KARAKTERISTIKE ULAZA:

MORFOLOŠKI TIP: Jednostavan

HIDROGEOLOŠKA KARAKTERISTIKA:

HIDROLOŠKA FUNKCIJA:

HIDROGEOLOŠKA KARAKTERISTIKA:

- Stalno potopljeno

- Izvor

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:

- Nema

REDNI BROJ: 55

BROJ PLOČICE: 

TOČNOST POLOŽAJA: GPS

KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

KOORDINATNE SLOBODE: Koordinate se nalaze u bazama podataka speleoloških društava.

POLOŽAJ I OPIS OBJEKTA:

Izvor se nalazi na zemljištu gospodina Grge Jurića, u selu Momići koje je udaljeno 3 km od Kule Norinske.

OBJEKT ISTRAŽILI:

SO HPD Željezničar, Breganja, DIK Freatik, SD Đula Medvedica

NAPOMENA:

Viđen i uhvaćen Proteus, fotografiranje, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA:
Romića vrilo

ZEMLJOPISNA KARTA (1:25000):
574-3-3

LOKALITET:
Podrujnica, Kula Norinska, Metković

TOČNOST POLOŽAJA:
GPS

POLOŽAJ I OPIS OBJEKTA:

PRISTUP:
Na cesti prema Kuli Norinskoj skrene se prema zaseoku Momići. Nakon Momića cestom se nastavi do zaseoka Podrujnica. Izvor se nalazi uz cestu.

VRSTA:
Izvor

DUBINA:
- 0,4 m

VERTIKALNA RAZLIKA:
0,4 m

KARAKTERISTIKE ULAZA:
Stalno potopljen

MORFOLOŠKI TIP:
Jednostavan

DULJINA:
4 m

VOLUMEN:
4,8 m³

HIDROGEOLOŠKA KARAKTERISTIKA:

HIDROGEOLOŠKA FUNKCIJA:
Stalno potopljen

HIDROLOŠKA FUNKCIJA:
Izvor

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
SO HPD Željezničar, Breganja, DIK Freatik, SD Đula Medvedica

NAPOMENA:
Prema pričama u izvoru je vidan Proteus. Skupljen je uzorak sedimenta za puževe, fotografiranje, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTAVA**

**IME OBJEKTA:**
Gornji izvor u Glušcima

**ZEMLJOPISNA KARTA (1:25000):**
57.4.3.4

**LOKALITET:**
Glušci, Mala Žaba, Metković

**TOČNOST POLOŢAJA:**
GPS

**POLOŢAJ I OPIS OBJEKTIVA:**
Gornji izvor je uska jama duboka 2 m. Od ulaza do dna (nasuprot ulazu označenom na topografskom nacrtu) nalazi se rasjedna ploha duž koje je izvor nastao. Strana ulaza nasuprot rasjedne plohe je betonizirana. U nastavku smjera te rasjedne plohe nalaze se još dva izvora (Donji i Čatrnja). Od ulaza se dno stepenasto spušta do jezerca koje završava u pukotini neprolaznoj za čovjeka. Voda je bistra te ju lokalno stanovništvo koristi za piće. Dubina vode je 60 cm.

**PRISTUP:**
Izvor se nalazi u selu Glušci, pored korita kojim teče voda za vrijeme jakih kiša (u blizini crkvice).

**VRSTA:**
Izvor

**MORFOLOŠKI TIP:**
Jednostavan

**DUBINA:**
- 3,3 m

**DULJINA:**
2 m

**VERTikalna razlika:**
2 m

**VOLUMEN:**
4,5 m³

**KARAKTERISTIKE ULAZE:**
Ulaz u stijeni (1x1,5 m)

**HIDROGEOLOŠKA KARAKTERISTIKA:**
Stalno potopljena

**HIDROLOŠKA FUNKCIJA:**
Izvor

**PERSPEKTIVE DALJnjih ISTRAŢIVANJA:**
Nema

**OBJEKT ISTRAŢILI:**
SO HPD Zeljezničar, Breganja, DIK Freatik, SD Dula Medvedica

**NAPOMENA:**
IME OBJEKTA: Izvor Prud
ZEMLJOPISNA KARTA (1:25000): Y = Koordinate se nalaze u bazama podataka
ZEMLJOPISNA KARTA (1:25000): Z = speleoloških društava.
LOKALITET: Prud, Metković
KOORDINATE POLOŽAJA: GPS

PLOŽAJ I OPIS OBJEKTA:
Izvor Prud jezerskog je tipa. U njemu nema ulaza u podzemlje nego voda izvire iz dna, na više mjesta kroz uske pukotine prekrivene pijeskom i kamenjem. Najveća dubina iznosi 8,4 m. Oko sredine jezera nalaze se cijevi vodocrpljašta velikog profila. Bokovi jezera obrasli su gustom riječnom vegetacijom.

PRISTUP:
Izvor Prud nalazi se u samom mjestu Prud, udaljenom oko 5 kilometara od grada Metkovića. Područje izvora ograđeno je od strane Vodovoda (vodocrpljašte Prud). U samom izvoru nalaze se dvije pumpe za crpljenje vode. U sklopu ograđenog prostora nalazi se nasip kojim se vozilom može pristupiti 30-ak m od ulaza u jezero.

VRSTA: Izvor
MORFOLOŠKI TIP: Sitasti izvor
DUBINA: 8,4 m
DULJINA: 48 m
VERTIKALNA RAZLIKA: 8,4 m
VOLUMEN: 9000 m³

KARAKTERISTIKE ULAZA:

HIDROGEOLOŠKA KARAKTERISTIKA:
Stalno potopljeno

HIDROLOŠKA FUNKCIJA:
Izvor

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

NAPOMENA:
Ovaj izvor u literaturi se navodi i kao izvor Norin. Skupljen je uzorak sedimenta za puževe. Fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
IME OBJEKTA: Čekrk jama

ZEMLJOPISNA KARTA (1:25000): 574-3-4

LOKALITET: Glušći, Mala Žaba, Metković

DUBINA: -13,8 m

DULJINA: 23,8 m

Jamski ulaz dimenzija 4x1,5 m

Koordinate se nalaze u bazama podataka speleoloških društava.

VOLUMEN: 310 m³

Djelomično potopljen

Jamski ulaz vodi na kosinu i vertikalni pad kojim se dođe do dvorane s jezerom. Dvorana je bogata speleotemama na površini i pod vodom. Dno jezera prekriveno je kamenim kršjem na kojem je istaloben fini sitnozrnati sediment. Duljina jezera i potopljenog dijela iznosi oko 9 m, a maksimalna dubina iznosi 3,2 m. Generalni azimut jame je SI. Dno potopljenog dijela objekta prekriveno je sitnozrnatim sedimentom. Potopljeni prostor širok je oko 2 m, a na kraju se sužava na 0,5 m. Prosječna visina iznosi 2 m. U tom dijelu primijećeni su i tragovi promjene razine vode.

NAPOMENA: Prikupljanje faune, fotografiranje i snimanje prostora i istraživanja, mjerenje mikroklimatskih parametara.
IZRAVLJANJE ŠPIJILSKIH STANIŠTA I IZVORSKIH PODRUČJA ŠIREG DUBROVAČKOG PODRUČJA S CILJEM VREDNOVNANJA BIORAZNOLIKOSTI I OCJENA PRIHVATLJIVOSTI
IZGRADNJE HIDROENERGETSKIH OBJEKTATA

KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTATA

IME OBJEKTATA: Izvor Palata
ZEMLJOPISNA KARTA (1:25000): 625-3-1
LOKALITET: Zaton Mali, Dubrovnik

POLOŽAJ I OPIS OBJEKTATA:
Nakon nemogućnosti ulaska u sami izvor Palata, ekipa se prebacila u kuću starog crpilišta i spustila na dno 6,5 m dubokog umjetno kopanog bunara. Spust je izveden kroz šaht dimenzija 0,60 x 0,60 m. Ulaz je vertikalni i spust u njega izveden je pomoću standardne speleološke opreme. Spust ulaza u bunar (šahta) nalazi se preljevni tunel te su od vrha prema dnu postavljene dvije cijevi malog profila. Na dnu je niska i uska pukotina koja ide u dubinu, ali prolaz nije moguć dok se ne ukloni kamenje.

PRISTUP:
S ceste koja vodi uz obalu od Dubrovnika prema jugu skrene se u Zaton Mali i uskoro dolazi do velikog izvora Palata koji se nalazi sa lijeve strane na samoj obali mora, odmah ispod ceste.

VRSTA: Kaptirani izvor
MORFOLOŠKI TIP: Jednostavan
DUBINA: 7 m
VERTIKALNA RAZLIKA: 7 m
DULJINA: 8 m
VOLUMEN: 22,5 m³

KARAKTERISTIKE ULAZA:

HIDROGEOLOŠKA KARAKTERISTIKA:
Stalno potopljen

HIDROLOŠKA FUNKCIJA:
Izvor

PERSPEKTIVE DALJINJIH ISTRAŽIVANJA:
Treba ukloniti kamenje s uske pukotine koja vodi u veći potopljeni prostor

OBJEKT ISTRAŽILI:
SO HPD Željezničar, Breganža, DIK Freatik, SD Dula Medvedica

NAPOMENA:
Prikupljanje faune, fotografiranje prostora i istraživanja. Izvor Palata u potpunosti je prekriven gustom vegetacijom i ulaz u podzemlje nije moguće.
**KATASTARSKI LIST**  
**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Bunar na zemlji Vicę Jakića</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>574-3-3</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Prud, Metković</td>
</tr>
<tr>
<td>GPS</td>
<td>Koordinate se nalaze u bazama podataka speleoloških društava.</td>
</tr>
</tbody>
</table>

**REDNI BROJ:** 63  
**BROJ PLOČICE:**

**POLOŽAJ I OPIS OBJEKTA:**  
Bunar se nalazi u dvorištu Vicę Jakića, oko 100m udaljen od izvora, tj. jezera Prud. Ulaz u bunar je betoniran (betonska ploča), kao i unutrašnjost koja je ozidana suhozidom. Bunar je dubok 2,3 m. Dubina vode za vrijeme posjeta iznosila je oko 35 cm. Na dnu je uočen detritus od listinca.

**Pristup:**  
Bunar se nalazi u mjestu Prud, na zemljištu gospodina Vicę Jakića (kuća preko puta križa).

**Vrsta:** Bunar  
**Dubina:** 2,3 m  
**Vertikalna razlika:** 2,3 m  
**Duljina:** 2,5 m  
**Volumen:** 2,5 m³

**Karakteristike ulaza:**  
Ulaz u bunar 1x1,8 m

**Hidrogeološka karakteristika:**  
Stalno potopljen

**Hidrološka funkcija:**  
Izvor

**Perspektive daljnjih istraživanja:**  
Nema

---

**Objekt istražili:**  
SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

**Napomena:**  
Fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Bunar na zemlji Mire Volarevića</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze</td>
</tr>
<tr>
<td>Z = u bazama podataka.</td>
<td></td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>GPS</td>
</tr>
<tr>
<td>TOČNOST POLOŽAJA:</td>
<td></td>
</tr>
<tr>
<td>LOČENI BROJ:</td>
<td>64</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**

Bunar je zabetoniran. Voda u njemu je niska i prijava. U desnom dijelu bunara nalazi se uska pukotina iza koje se ništa ne vidi. Pukotina nije prolazna za čovjeka.

**PRISTUP:**

Iz mjesta Prud krene se pored ograđenog dijela izvora Prud (preko puta križa). Nakon 500 m dolazi se u zaseok Špirići. U njemu se nalazi zapuštena kuća (s bočalištem) u čijem je dvorištu (kad se uđe na glavna vrata s lijeve strane) nalazi izvor. Ulaz je zabetoniran.

**VRSTA:** Bunar

**MORFOLOŠKI TIP:** Jednostavan

**DUBINA:** -1,7 m

**VERTikalna RAZLIKA:** 1,7 m

**DULJINA:** 2 m

**VOLUMEN:** 1 m³

**KARAKTERISTIKE ULAZA:** Betonski otvor 0,5x0,5 m

**HIDROGEOLOŠKA KARAKTERISTIKA:** Stalno potopljen

**HIDROLOŠKA FUNKCIJA:** Izvor

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:** Nema

---

**OBJEKT ISTRAŽILI:**

SO HPD Željeznica, Breganja, DIK Freatik, SD Dula Medvedica

**NAPOMENA:** Fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTARKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Jama u Predolcu
ZEMLJOPISNA KARTA (1:25000): Z
LOKALITET: Metković

POLOŽAJ I OPIS OBJEKTA:
Jama je smještena na rubu brijega Predolac i neretvanskog polja, podno brda Šibovnica blizu stare ceste za Dubrovnik. Jama je duljine 56 m i dubine 20 m. Ulaz u jamu širok je 3 m, a visok 2,7 m. S ulaza se vidi prostrana ulazna dvorana na dnu koje se nalazi podzemno jezero. Po sredini jezera uzdignut je greben koji ga razdvaja na dva jezera: Plitko i Duboko. Na južnoj strani Dubokog jezera, 5 m iznad površine vode, nalazi se ulaz u Zasigani kanal, dugačak 10-ak m. Na kraju Zasiganog kanala nalazi se vertikalni skok od 5 m kojim se dolazi do Vodenog kanala. Kanal je malen i bogat sigastim ukrasima. Njime se dolazi do malog, Trećeg jezera, a time i do kraja jame.

PRISTUP:
Jama se nalazi u Predolcu (Metković) u dvorištu kuće gospodina Markice Vuice. Na cesti postoje table.

VRSTA: Jama
MORFOLOŠKI TIP: Razvden
DUBINA: - 20 m
DULJINA: 56 m
VERTIKALNA RAZLIKA: 20 m
VOLUMEN: 2300 m³

KARAKTERISTIKE ULAZA:
Turistički uređen, 3 x 2,7m

HIDROGEOLOŠKA KARAKTERISTIKA:
Stalno potopljeno

HIDROLOŠKA FUNKCIJA:
Protočan

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

OBJEKTI ISTRAŽILI:
HBSD, SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

NAPOMENA:
Ulan u jamu je uređen u turističke svrhe i sastavni je dio edukativnog centra „Congeria“. Prikupljanje faune, fotografiranje i snimanje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**  
**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Izvor Bijeli Vir</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Z = speleoloških društava.</td>
</tr>
<tr>
<td></td>
<td>TOČNOST POLOŽAJA:</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**

Cijelo jezero je dugascko 70 m i široko 30 m. Voda dotiče iz nekoliko većih i mnoštvo manjih pukotina u dnu jezera. Na mjestima izviranja dio je golo i prekriven sedimentom dok su ostali dijelovi dno prekriven vodenom vegetacijom. Na 9,8 m dubine nalazi se ulaz u jamu. Jama je duboka 7,2 m do mjesta do kojeg se može zaroniti s horiz. duljinom od 4 m. U jamu su stijene čiste bez sedimenta što upućuje da je tok iz jam u prostor jezera dovoljno jak da sprječava taloženje sedimenta u jamj. Stijene su potpuno isprane, uglačane, glatkih bridova. Jama završava na dubini od 17 metara sa dva uska kanala, neprolazna za čovjeka. Osim sitnih riba, na njima nije uočena fauna.

**PRISTUP:**

Uzor Bijeli Vir nalazi se u mjestu Bijeli Vir, oko 7 km udaljenom od grada Metkovića. Nakon ulaska u selo skreće se desno te se nakon 2 km dolazi do jezera u kojem se nalazi uzor.

**VRSTA:** Izvor - jezero  
**MORFOLOŠKI TIP:** Jednostavan  
**DUBINA:** 7,2 m  
**VERTikalna razlika:** 7,2 m  
**VOLUMEN:** 42 m³

**Perspektive daljnjih istraživanja:** Nema

**OBJEKT ISTRAŽILI:**  
SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

**NAPOMENA:**
Prikupljanje faune, fotografiranje i snimanje prostora i istraživanja, mjerenje mikroklimatskih parametara.
IME OBJEKTA: Izvor špilja kod kapelice Sv. Mihovil

ZEMLJOPISNA KARTA (1:25000):

KOORDINATE: X = Koordinate se nalaze u bazama podataka
Y = u bazama podataka
Z = speleoloških društava.

TOČNOST POLOŢAJA: GPS

LOKALITET: Kosa, Metković, Zažablje

POLOŢAJ I OPIS OBJEKTA:
Nakon ulazne vertikale od oko 1,5 m (lako prolazne na ruke) dolazi se u glavni kanal, duljine oko 2 m. Kanal završava sifonom. S desne bočne strane od ulazne vertikale odvaja se još jedan kanal, uži i niži, koji također završava sifonom. U njemu je preusko za ronjenje. Dubina vode je oko 1 meter i pada. Oba kanala duga su oko 2 m. U sifonu u glavnom kanalu, s desne strane, vidi se uski prolaz i nastavak. U tom sifonu nalaze se stalagmiti i stalaktiti što ukazuje na promjene hidrološkog režima u špilji kroz geološku prošlost. Kršje koje se nalazi na dnu duž glavnog sifona je nestabilno i prilikom ronjenja je došlo do njegova odrona.

PRISTUP:
Izvor se nalazi uz cestu u selu Kosa (u blizini Metkovića), odmah pored kapelice Sv. Mihovila.

VRSTA: Izvor

DUBINA: 5,5 m

VERTIKALNA RAZLIKA: 5,5 m

DULJINA: 12 m

VOLUMEN: 21 m³

KARAKTERISTIKE ULAZA:

1 x 1 m

HIDROGEOLOŠKA KARAKTERISTIKA:
Stalno poplavljen

HIDROLOŠKA FUNKCIJA:
Izvor

PERSPEKTIVE DALJNJIH ISTRAŢIVANJA:
Uklanjanje blokova kamenja u bočnom kanalu

OBJEKT ISTRAŢILI:
SO HPD Željezničar, Breganja, DIK Freatik

NAPOMENA:
Prikupljanje faune, fotografiranje i snimanje prostora i istraţivanja, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Vir kod kapelice Sv. Mihovila

ZEMLJOPISNA KARTA (1:25000):
624-1-2

LOKALITET: Kosa, Metković, Zažablje

X = Koordinate se nalaze
Y = u bazama podataka
Z = speleoloških društava.

TOČNOST POLOŽAJA: GPS

POLOŽAJ I OPIS OBJEKTA:
Vir je dubok 6 m sa strmim padom, nepravilnog kružnog oblika s horizontalnom duljinom od 22 m i horizontalnom širinom od 21 m. Na dnu vira uočena je olupina automobila djelomično prekrivena sedimentom te potopljeno stablo. Dno vira većinom je prekriveno finim sedimentom, a mjestimično kršjem. Obale vira obrasle su gustom riječnom vegetacijom.

VRSTA: Sitasti izvor
MORFOLOŠKI TIP: Stalno potopljen

DUBINA: - 6 m
DULJINA: 22 m
VERTIKALNA RAZLIKA: 6 m

KARAKTERISTIKE ULAZA:

HIDROGEOLOŠKA KARAKTERISTIKA:
Stalno potoplj

HIDROGEOLOŠKA FUNKCIJA:
Izvor

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

PRISTUP:
Objekt se nalazi u unutarnjoj okuci desnog zavoja na staroj cesti Metković – Neum. Na cesti prema selu Kosa, 1 km prije ulaska u selo, 100 m od kapelice Sv. Mihovil odmah uz cestu.

OBJEKT ISTRAŽILI:
SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

NAPOMENA:
Prikupljanje faune, fotografiranje i snimanje prostora i istraživanja, mjerenje mikroklimatskih parametara. U izvoru se nalaze komadi krupnog otpada: dio kamiona, olupina automobila, limene ploče i razni drugi otpad. Izvor je zagaden.
**IME OBJEKTA:** Izvor u Mliništu  
**ZEMLJOPISNA KARTA (1:25000):** 624-1-1  
**LOKALITET:** Mlinište, Vidonje, Zažablje  
**POLOŽAJ I OPIS OBJEKTA:**  
**VRSTA:** Sitasti izvor  
**DUBINA:** -10 m  
**DULJINA:** 74 m  
**VOLUMEN:** 8802 m³  
**REDNI BROJ:** 69  
**BROJ PLOČICE:** Izvor  
**NAPOMENA:** OBJEKTI ISTRAŽILI: SO HPD Željezničar, Breganja, DIK Freatik, SD Đula Medvedica  
**NAPOMENA:** Prikupljanje faune, fotografiranje i snimanje prostora i istraživanja, mjerenje mikroklimatskih parametara. U izvoru su velike količine krupnog otpada, drveće i potopljeni čamac. Izvor je jako zagađen.

**KATASTARSKI LIST**  
**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Izvor u Mliništu</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>624-1-1</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Mlinište, Vidonje, Zažablje</td>
</tr>
<tr>
<td>BROJ PLOČICE:</td>
<td>Izvor</td>
</tr>
<tr>
<td>TOČNOST POLOŻAJA:</td>
<td>GPS</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**  
Radi se o jezeru u čijem se dnu i boku uz staru cestu Metković – Neum nalaze površinski i podzemni izvori. Na dubini od 9,8 m u području izviranja, primijećena je veća količina antropogenog otpada bačenog u jezero. Dno jezera je prekriveno sedimentom. Rubovi jezera obrasli su gušćom rječnom vegetacijom. Zbog blizine kuća i septičkih jama velika je vjerojatnost da u jezeru završi određena količina kanalizacije što potkrepljuje i neugodan miris na površini vode.

**PRISTUP:** Izvor se nalazi u mjestu Mlinište. Glavna cesta kroz selo vodi pored jezera u kojem se nalazi izvor.

<table>
<thead>
<tr>
<th>VRSTA:</th>
<th>Sitasti izvor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORFOLOŠKI TIP:</td>
<td>Jednostavan</td>
</tr>
<tr>
<td>DUBINA:</td>
<td>-10 m</td>
</tr>
<tr>
<td>DULJINA:</td>
<td>74 m</td>
</tr>
<tr>
<td>VERTIKALNA RAZLIKA:</td>
<td>10 m</td>
</tr>
<tr>
<td>VOLUMEN:</td>
<td>8802 m³</td>
</tr>
</tbody>
</table>

**OBJEKTI ISTRAŽILI:**  
SO HPD Željezničar, Breganja, DIK Freatik, SD Đula Medvedica

**REDNI BROJ:** 69
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTAA**

| IME OBJEKTAA: | **IME OBJEKTAA:** Izvor u Mislinama | X = Koordinate se nalaze | BROJ PLOČICE : |
| ZEMLJOPISNA KARTA (1:25000): | ZEMLJOPISNA KARTA (1:25000): | **ZEMLJOPISNA KARTA (1:25000):** 624-1-1 | Y = u bazama podataka |
| LOKALITET: | LOKALITET: Misлина, Metković, Zažablje | Z = speleoloških društava. | **TOČNOST POLOŽAJA:** GPS |

**POLOŢAJ I OPIS OBJEKTAA:**

Kod izrade topografskog nacrta držalo se pozicije jezera, tj. najdublje dijela u čijem području je izvor. Područje interesa vidljivo na nacrtu obraslo je gustom vegetacijom te je na malom području na dnu vidljivo kamenje / stijena što upućuje na područje izvora. Uz podzemni izvor postoje još dva površinska izvora u JZ dijelu jezera. Voda je dosta bistrija u odnosu na Bijeli Vir. Dubina iznosi 7.4 m, horizontalna duljina 7 m, a horizontalna širina 5 m. U jezeru nema antropogenog otpada, međutim, lokalno stanovništvo tvrdi da je izvor u odnosu na prijašnje godine jako obrastao.

**PRISTUP:**

Izvor se nalazi u mjestu Misлина, 2 km udaljenom od mjesta Mlinište. Glavna cesta prolazi pored izvora.

| VRSTA : | MORFOLOŠKI TIP : | **VRSTA :** Izvor - jezero | **MORFOLOŠKI TIP :** Jednostavan | **DUBINA :** - 7.4 m | **VERTikalna Razlika :** 7.4 m | **DULJINA :** 7 m | **VOLUMEN :** 70 m³ |
| KARAKTERISTIKE ULAZA : | **KARAKTERISTIKE ULAZA :** | | | | | | |
| HIDROGEOLošKA KARAKTERISTIKA : | **HIDROGEOLošKA KARAKTERISTIKA :** Stalno potopljen | | | | | | |
| HIDROLOŠKA FUNKCIJA : | **HIDROLOŠKA FUNKCIJA :** Izvor | | | | | | |
| PERSPEKTIVE DALJNJIH ISTRAŢIVANJA : | **PERSPEKTIVE DALJNJIH ISTRAŢIVANJA :** Nema | | | | | | |

**OBJEKT ISTRAAŽILI :**

SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

**NAPOMENA :**
Prikupljanje faune, fotografiranje i snimanje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARKI LIST**
**SPELEOLOŠKOG OBJEKTA**

**IME OBJEKTA:** Izvor Badžula

**ZEMLJOPISNA KARTA (1:25000):** 624-1-1

**LOKALITET:** Badžula, Metković, Zažablje

**REDNI BROJ:** 71

**BROJ PLOČICE:**

**TOČNOST POLOŽAJA:** GPS

**POLOŽAJ I OPIS OBJEKTA:**
Izvor je ujezerenog tipa. Voda izvire iz pukotina koje se nalaze u istočnom dijelu jezera. Jezero se sastoji od 2 udubljenja: južnog (JZ), manjeg i sjevernog, većeg (SI). U sjevernom dijelu izvora, u dnu, također su vidljivi otvori u sedimentu iz kojih izvire voda. Dno jezera prekriveno je muljem, a u rubovima i križem. Jezero je ljevastog profila. U rubovima je obraslo akvatičkim biljkama. Jezero je dugačko 50 m, a široko 24 m u sjevernom, a 21 m u južnom dijelu. Maksimalna dubina u sjevernom dijelu jezera je 6,7 m.

**PRISTUP:**
Na cesti prema Mliništu, iza mjesta Mislina dolazi se u mjesto Badžula. Izvor se nalazi u jezeru koje je odmah uz cestu u samom selu.

**VRSTA:** Sitasti izvor
**MORFOLOŠKI TIP:** Jednostavan

**DUBINA:** 6,7 m
**DULJINA:** 50 m
**VERTIKALNA RAZLIKA:** 6,7 m
**VOLUMEN:** 6700 m³

**KARAKTERISTIKE ULAZA:**

**HIDROGEOLOŠKA KARAKTERISTIKA:** Stalno potopljen

**HIDROLOŠKA FUNKCIJA:** Izvor

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:** Nema

**OBJEKT ISTRAŽILI:**
SO HPD Željezničar, DIK Freatik

**NAPOMENA:**
Fotografiranje i snimanje prostora i istraživanja, mjerenje mikroklimatskih parametara. Izvor je zagađen antropogenim otpadom. U njemu se nalazi dosta krupnog otpada, gume, boce, limenke itd.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

**IME OBJEKTA:**

<table>
<thead>
<tr>
<th>Izvor špilja kod Bunkera</th>
</tr>
</thead>
</table>

**ZEMLJOPISNA KARTA (1:25000):**

| 574-3-4 |

**LOKALITET:**

| Glušci, Mala Žaba, Metković |

**TOČNOST POLOŽAJA:**

| GPS |

**POLOŽAJ I OPIS OBJEKTA:**

| Objekt se nalazi odmah uz cestu koja vodi prema Glušcima, oko 3 m u unutrašnjosti gurta šikare. Ulaz je mali, visine 1 m. Na ulaznom dijelu vidljivi su stalaktiti. Jama se postepeno spušta do jezerca na dnu. Duboka je 1,8 m. Jezerce je veličine 0,5x1 m. Na dnu je kršje. Objekt završava u uskoj nepreglednoj pukotini neproplavljivoj za čovjek. Voda je zauredala i po površini su plivali ostatci strvine. |

**PRISTUP:**

| Objekt se nalazi na cesti prema selu Glušci, prije Čekrka. Jama se nalazi 3 m od ceste u škari. |

**VRSTA:**

| Izvor |

**MORFOLOŠKI TIP:**

| Jednostavan |

**DUBINA:**

| 1,8 m |

**DULJINA:**

| 2,2 m |

**VERTIKALNA RAZLIKA:**

| 1,8 m |

**VOLUMEN:**

| 2 m³ |

**KARAKTERISTIKA ULAZA:**

| 0,7x0,5 m |

**HIDROGEOLOŠKA KARAKTERISTIKA:**

| Stalno potopljene |

**HIDROLOŠKA FUNKCIJA:**

| Izvor |

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:**

| Nema |

---

**OBJEKT ISTRAŽILI:**

| SO HPD Željezničar, DIK Freatik |

**NAPOMENA:**

| Fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara. |
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Izvor Obli vir

ZEMLJOPISNA KARTA (1:25000):
624-1-1

LOKALITET: Pižinovac, Opuzen, Slivno

IMEDAN VODA: X = Y = Z =

TOČNOST POLOŢAJA: GPS

POLOŢAJ I OPIS OBJEKTA:
Voda je tamno smeđe boje što ukazuje na anoksične uvjete i raspadanje organske tvari. Zbog izuzetno loše vidljivosti nisu se mogle mjeriti dimenzije pod vodom na temelju čega bi bilo moguće izraditi topografski nacrt. Također, zbog vidljivosti koja je bila nula, nije bilo moguće fotografirati ni video snimati. Iz tog razloga je i stavljena ocjena da u objektu nema perspektive za daljnje istraživanje pošto je ronjenje u njemu vrlo opasno.

PRISTUP:
Krene se cestom koja vodi od Metkovića prema Neumu. Cestom se prođe iznad Oblog vira (vidljiv je s ceste) i skrene se desno prema Pižinovcu. S te ceste skrene se na prvi makadam s desne strane. Makadam vodi do polja u kojem se nalazi izvor. Izvor je jako obrašten gustom trstikom koju je bilo potrebno sječi kako bi se došlo do samog izvora.

VRSTA : Izvor
 MORFOLOŠKI TIP : Jednostavan
 DUBINA : 9 m
 DULJINA : 50 m
 VOLUMEN: 3768 m³

KARAKTERISTIKE ULAZA :

HIDROGELOŠKA KARAKTERISTIKA :

HIDROLOŠKA FUNKCIJA :

PERSPEKTIVE DALJNJIH ISTRAŢIVANJA :

POLOŢAJ OBJEKTA:

HIDROGEOLOŠKA KARAKTERISTIKA :

OBJEKT ISTRAŢILI :
SO HPD Zeljezničar, Breganja, DIK Freatik, SD Dula Medvedica

NAPOMENA :
Fotografiranje prostora i mjerenje mikroklimatskih parametara.
**IME OBJEKTA:**
Izvor špilja površine Oblog vira

**ZEMLJOPISNA KARTA (1:25000):**
624-1-1

**LOKALITET:**
Pižinovac, Opuzen, Slivno

**TOČNOST POLOŢAJA:**
GPS

**POLOŢAJ I OPIS OBJEKTA:**

**PRISTUP:**
Krene se cestom koja vodi od Metkovića prema Neumu. Cestom se prođe iznad Oblog vira (vidljiv je s ceste) i skrene se desno prema Pižinovcu. S te ceste skrene se na prvi makadam s desne strane. Makadam vodi do polja u kojem se nalazi izvor Obli vir i izvor špilja. Špilja se nalazi 15 m od ceste, jasno je vidljiva.

**VRSTA:**
Špilja

**MORFOLOŠKI TIP:**
Jednostavan

**DUBINA:**
-7,7 m

**DULJINA:**
24,8 m

**VERTIKALNA RAZLIKA:**
7,7 m

**VOLUMEN:**
400 m³

**KARAKTERISTIKE ULAZA:**
Ulaz dimenzija 7x5m

**HIDROGEOLOŠKA KARAKTERISTIKA:**
Stano potoplen

**HIDROLOŠKA FUNKCIJA:**
Izvor

**PERSPEKTIVE DALJNJIH ISTRAŢIVANJA:**
Nema

**OBJEKAT ISTRAŢILI:**
SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

**NAPOMENA:**
Prikupljanje faune, fotografiranje prostora i istraţivanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

**IME OBJEKTATA:**
Izvor Studenac

**ZEMLJOPISNA KARTA (1:25000):**
624.1-2

**LOKALITET:**
Stupa, Mali Ston, Dubrovačko primorje

**REDNI BROJ:**
75

**BROJ PLOČICE:**

**X:** Koordinate se nalaze u bazama podataka speleoloških društava.

**Y:**

**Z:**

**TOČNOST POLOŽAJA:**
GPS

**POLOŽAJ I OPIS OBJEKTATA:**
Radi se o izvoru koji je s gornje strane betoniran i poklopljen metalnim poklopcem. Prilikom posjeta utvrdili smo da se donji prostor širi na 2 x 1,5 m. U JI dijelu vidi se pukotina, neprolazna za čovjeka.

**PRISTUP:**
Izvor se nalazi u selu Stupa pored nogometnog igrališta.

**VRSTA:**
Izvor

**DUBINA:**
3,5 m

**VERTIKALNA RAZLIKA:**
3,5 m

**DULJINA:**
3,5 m

**VOLUMEN:**
1 m³

**MORFOLOŠKI TIP:**
Jednostavan

**KARAKTERISTIKE ULAZA:**
Betonirani ulaz 0,5 x 0,5 m

**HIDROGEOLOŠKA KARAKTERISTIKA:**
Stalno poplavljen

**HIDROLOŠKA FUNKCIJA:**
Izvor

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:**
Nema

**OBJEKT ISTRAŽILI:**
SO HPD Zeljezničar, Breganj, DIK Freatik, SD Đula Medvedica

**NAPOMENA:**
Fotografiranje prostora i istraživanja. Fauna nije uočena. Vođeni dio je nedostupan pa mjerenje fizikalno-kemijskih parametara nije bilo moguće.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Izvor Topolac</th>
</tr>
</thead>
<tbody>
<tr>
<td>ŽEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze</td>
</tr>
<tr>
<td>624-1-2</td>
<td>Y = u bazama podataka</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Z = speleoških društava.</td>
</tr>
<tr>
<td>Topolo, Mali Ston, Dubrovačko primorje</td>
<td>TOČNOST POLOŽAJA: GPS</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**

Izvor je kaptiran, u potpunosti ozidan i ulazak u njega nije bio moguć. Iz tog razloga nije bilo moguće uzeti ikakve podatke s ovog lokaliteta. Vani su vidljiva samo dva betonirana bazena koji se pune iz kaptaže. Izvor koriste lokalni stanovnici za pitku vodu.

**PRISTUP:**

Krene se prema mjestu Stupa. Prije Stupe skrene se za Topolo. Kod zadružnog doma skrene se desno te se malom cesticom ide oko 600 m. Iza zadnje kuće s desne strane vidi se kaptaža.

<table>
<thead>
<tr>
<th>VRSTA:</th>
<th>Izvor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORFOLOŠKI TIP:</td>
<td>-</td>
</tr>
<tr>
<td>DUBINA:</td>
<td>- m</td>
</tr>
<tr>
<td>VERTIKALNA RAZLIKA:</td>
<td>- m</td>
</tr>
<tr>
<td>DULJINA:</td>
<td>- m</td>
</tr>
<tr>
<td>VOLUMEN:</td>
<td>- m³</td>
</tr>
<tr>
<td>KARAKTERISTIKE ULAZA:</td>
<td>-</td>
</tr>
<tr>
<td>HIDROGEOLOŠKA KARAKTERISTIKA:</td>
<td>štakno potopljena</td>
</tr>
<tr>
<td>HIDROLOŠKA FUNKCIJA:</td>
<td>Izvor</td>
</tr>
<tr>
<td>PERSPEKTIVE DALJINJIH ISTRAŽIVANJA:</td>
<td>-</td>
</tr>
</tbody>
</table>

**OBJEKT ISTRAŽILI:**

- 

**NAPOMENA:**

Fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara u bazenima kaptaže.
**IME OBJEKTA:**
Vrulja Morašnica

**ZEMLJOPISNA KARTA (1:25000):**
624-1-2

**LOKALITET:**
Uvala Bistrina, Stupa, Mali Ston

**IMENA PLOČICE:**

**VRSTA:**
Jednostavan

**DUBINA:**
- m

**DULJINA:**
m

**VOLUMEN:**
m³

**POLOŽAJ I OPIS OBJEKTA:**
Vrulja nema kanal nego voda izvire iz sedimenta. Udubljenje u sedimentu počinje na 8 m dubine, a najdublja točka je 14,5 m.

**POREZNI BROJ:**

**REDNI BROJ:**
77

**BROJ PLOČICE:**

**TOČNOST POLOŽAJA:**
GPS

**POLOŽAJ I OPIS OBJEKTA:**
Vrulja nema kanal nego voda izvire iz sedimenta. Udubljenje u sedimentu počinje na 8 m dubine, a najdublja točka je 14,5 m.

**VRSTA:**
Vrulja

**DUBINA:**
- m

**VERTIKALNA RAZLIKA:**
m

**KARAKTERISTIKE ULAZA:**

**MORFOLOŠKI TIP:**
Jednostavan

**DULJINA:**
m

**VOLUMEN:**
m³

**KARAKTERISTIKA:**

**HIDROLOŠKA KARAKTERISTIKA:**
Povremeno aktivna

**HIDROLOŠKA FUNKCIJA:**
Vrulja

**PERSPEKTIVE DALJNJI ISTRAŽIVANJE:**
Nema

**OBJEKT ISTRAŽILI:**
SO HDŽ Zeljezničar, Breganja, DIK Freatik, SD Đula Medvedica

**NAPOMENA:**
U vodi je vladala jako loša vidljivost pa podvodno fotografiranje i video snimanje nije bilo moguće. Mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Vrulja Stupski jaz</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ZEMLJOPISNA KARTA (1:25000):</strong></td>
<td>X = Koordinate se nalaze</td>
</tr>
<tr>
<td>624.1-2</td>
<td>Y = u bazama podataka</td>
</tr>
<tr>
<td><strong>LOKALITET:</strong></td>
<td>Z = speleoloških objekata.</td>
</tr>
<tr>
<td>Uvala Bistrina, Stupa, Mali Ston</td>
<td><strong>TOČNOST POLOŽAJA:</strong> GPS</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**

U neposrednoj blizini na ovom prostoru postoji više vruļja. S jedne strane vruļja nalazi se pijesak, a sa druge mulj.

**PRISTUP:**

U Stonu se skrene prema mjestu Stupe, prije mosta. Vrulja se nalazi 4 km od ulaza u zaljev.

**VRSTA:**

Vrulja

**DUBINA:**

- m

**MORFOLOŠKI TIP:**

Jednostavan

**DULJINA:**

m

**HIDROGEOLOŠKA KARAKTERISTIKA:**

- Povremeno aktivna

<table>
<thead>
<tr>
<th>KARAKTERISTIKE ULaza:</th>
<th>-</th>
</tr>
</thead>
</table>

**KARAKTERISTIKE ULAZA:**

- 

**HIDROLOŠKA FUNKCIJA:**

Vrulja

**PERSPEKTIVE DALJINJIH ISTRAŽIVANJA:**

Nema

**VRSTI INSTRUMENTA:**

SO HPD Zeljezničar, Breganja, DIK Freatik, SD Đula Medvedica

**NAPOMENA:**

U vodi je vladala jako loša vidljivost pa podvodno fotografiranje i video snimanje nije bilo moguće. Mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Izvor Ugor
ZEMLJOPISNA KARTA (1:25000): 624-2-4
LOKALITET: Grgurići, Slano, Dubrovačko primorje

REDNI BROJ: 79

IMENA BROJEVA: X = Koordinate se nalaze u bazama podataka.
Y = speleoloških objekata.
Z = GPS

POLOŽAJ I OPIS OBJEKTA:

VRSTA: Kaptirani izvor
DUBINA: 2 m
VERTIKALNA RAZLIKA: 2 m
VOLUMEN: 3,1 m³

MORFOLOŠKI TIP: Jednostavan
DULJINA: 2 m

KARAKTERISTIKE ULAZA:
Kaptirani izvor 1,3 x 1,2 m

HIDROGEOLOŠKA KARAKTERISTIKA:
Štajno potopljen

HIDROLOŠKA FUNKCIJA:
Izvor

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

POSTOJEĆI BROJ PLOČICE:
Izvor

PRISTUP:
Iz mjesta Slano skrene se desno prema mjestu Grgurići. Vozi se cestom uz obalu do sela. U selu se skrene pored kioska desno. Vozi se do prvog križanja na kojem se opet skrene desno. Nasuprot male kapelice sa lijeve strane nalazi se ozidani izvor sa metalnim vratima (početak betoniranog kanala).

VRSTA: Kaptirani izvor
DUBINA: 2 m
VERTIKALNA RAZLIKA: 2 m
VOLUMEN: 3,1 m³

KARAKTERISTIKE ULAZA:
Kaptirani izvor 1,3 x 1,2 m

HIDROGEOLOŠKA KARAKTERISTIKA:
Štajno potopljen

HIDROLOŠKA FUNKCIJA:
Izvor

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

NAPOMENA:
Prikupljanje faune, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**
**SPELEOLOŠKOG OBJEKTA**

**IME OBJEKTA:** Izvor Luncijata  
**ZEMLJOPIŠNA KARTA (1:25000):**  
**LOKALITET:** Banja, Slano, Dubrovačko primorje  

**Položaj i Opis Objekta:**
Izvor nije prolazan za čovjeka i ronjenje u njemu nije moguće.

**PRISTUP:**

Izvor se nalazi u mjestu Banja. U Slanom se na raskršću skrene desno i vozi uz obalu do crkvice Sv. Luncijata.

**VRSTA:** Izvor  
**MORFOLOŠKI TIP:** Jednostavan  
**DULJINA:** 1 m  
**DUBINA:** 0,2 m  
**VERTIKALNA RAZLIKA:** 0,2 m  
**VOLUMEN:** 1 m³

**KARAKTERISTIKE ULAZA:**

| 0,3 x 0,4 m |

**HIDROGEOLOŠKA KARAKTERISTIKA:**

| Stalno potopljena |

**HIDROLOŠKA FUNKCIJA:**

Izvor

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:**

Nema

**OBJEKT ISTRAŽILI:**
SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

**NAPOMENA:**
Fotografiranje i snimanje. Zbog boćate vode u njemu se nisu mogli izmjeriti fizikalno-kemijski parametri.
IME OBJEKTA: Izvor Bosna

ZEMLJOPISNA KARTA (1:25000): 625-3-1

LOKALITET: Orašac, Dubrovnik

TOČNOST POLOŽAJA: GPS

REDNI BROJ: 81

BROJ PLOČICE:

POLOŽAJ I OPIS OBJEKTA:

Dno akumulacije zasuto je šljunkom, mulj se nalazi samo oko potopljene kaptaže. U nju se ulazi kroz otvoren šaht dimenzija 1 x 1 m. U šahtu je sve puno cijevi i prolazak dalje je nesiguran i opasan.

PRISTUP:

U selu Orašac vozi se prema crkvi Gospe od Orašca. Pored crkve uz korito se nakon 100 m dođe do brane i akumulacije rječice Bosne unutar koje se nalazi izvor.

VRSTA: Akumulacija, potopljena kaptaža

MORFOLOŠKI TIP: -

DUBINA: - m

VERTIKALNA RAZLIKA:

VERNIKALNA RAZLIKA:

DULJINA: m

VOLUMEN: m³

KARAKTERISTIKE ULAZA:

HIDROGEOLOŠKA KARAKTERISTIKA:

HIDROGEOLOŠKA FUNKCIJA:

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:

OBJEKT ISTRAŽILI:

SO HPD Zieljezničar, Breganja, DIK Freatik, SD Dula Medvedica

NAPOMENA:

Fotografiranje i snimanje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTARKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Izvorište Slavljan
ŽEMLJOPISNA KARTA (1:25000): 625-3-2
LOKALITET: Komolac, Dubrovnik

POLOŽAJ I OPIS OBJEKTA:

VRSTA: Jama i špilja
MORFOLOŠKI TIP: Jednostavan
DUBINA: 3 m
DULJINA: 3 m
VERTIKALNA RAZLIKA: 3 m
VOLUMEN: 6,7 m³

KARAKTERISTIKE ULAZA:
Did 1,5 x 1,5 m; Baba 1 x 1,5 m

HIDROGEOLOŠKA KARAKTERISTIKA:
Stanožno potopljeno

HIDROGEOLOŠKA FUNKCIJA:
Izvor

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

NAPOMENA:
Fotografiranje, mjerenje mikroklimatskih parametara (Slavljan, bazeni), prikupljanje vanjske faune u preljevnom bazenu kaptiranog izvora
**IMIĆ OBJEKT A:**
Zemljopisna karta (1:25000): 625-3-2
LOKALITET: Zavrelje, Mlini, Župa dubrovačka

**POLOŽAJ I OPIS OBJEKT A:**
Izvor je kaptiran. U šaht se spušta 2 m na čijem se dnu nalaze dva betonirana bazena. U jednom su cijevi i pumpe, a u drugom je samo voda. Na bočnom zidu ostavljena su dva otvora u kojima se vide stijene iz kojih dotiče voda.

**PRISTUP:**
Iz mjesta Mini skrene se za Zavrelje. Nakon 300 m sljedi oštro skretanje desno pored potoka te cesta vodi do vodocrpilišta unutar kojeg se nalazi kaptirani izvor.

**VRSTA:** Kaptirani izvor  
**MORFOLOŠKI TIP:**  
**DUBINA:** 2 m  
**VERTIKALNA RAZLIKA:** m  
**DULJINA:** m  
**VOLUMEN:** m³  

**KARAKTERISTIKE ULAZA:** Betonirani ulaz, 0,5 x 0,5 m

**HIDROGEOLOŠKA KARAKTERISTIKA:** Stalno potopoljen

**HIDROLOŠKA FUNKCIJA:** Izvor

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:** Nema

**OBJEKT ISTRAŽILI:**
SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

**NAPOMENA:**
Prikupljanje faune, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA:
Topli izvor u Žatunu Malom

ZEMLJOPISNA KARTA (1:25000):
625-3-1

LOKALITET:
Žaton Mali, Dubrovnik

REDNI BROJ: 84

PRISTUP:
Po dolasku u Žaton Mali, dođe se do velikog izvora Palata koji se nalazi s lijeve strane na samoj obali mora. Nastavi se cestom dalje, oko 100 m, do prve kuće. Kod te kuće skrene se u vrt. U vrtu se nalazi izvor. Izvor se nalazi na posjedu gospodina Ivesh Kukuljice.

POLOŽAJ I OPIS OBJEKTA:
Gornji dio izvora je ozidan.

VRSTA:
Izvor

MORFOLOŠKI TIP:
Jednostavan

DUBINA:
0,8 m

VERTIKALNA RAZLIKA:
0,8 m

DULJINA:
1 m

VOLUMEN:
1 m³

KARAKTERISTIKE ULAZA:
1 x 1 m

HIDROGEOLOŠKA KARAKTERISTIKA:
Stačno potopljeno

HIDROLOŠKA FUNKCIJA:
Izvor

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
SO HPD Željezničar, Breganja, DIK Freatik, SD Đula Medvedica

NAPOMENA:
Prikupljanje faune, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTATSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Kaverna Duboka Ljuta
ZEMLJOPISNA KARTA (1:25000): 625-3-4
LOKALITET: Plat, Župa dubrovačka

TOČNOST POLOŽAJA: GPS

REDNI BROJ: 85
BROJ PLOČICE: 01-0464

IME OBJEKTA: Kaverna Duboka Ljuta
ZEMLJOPISNA KARTA (1:25000): 625-3-4
LOKALITET: Plat, Župa dubrovačka

TOČNOST POLOŽAJA: GPS

PRISTUP:
Kaverna Duboka Ljuta nalazi se na prostoru HE Plat. U samu kavernu ulazi se nakon 300 m tunela, kroz umjetno otvoreni prolaz.

VRSTA: Kaverna
MORFOLOŠKI TIP: Razveden
DUBINA : -63 m
VERTIKALNA RAZLIKA : 80 m
DULJINA : 276,5 m
VOLUMEN: 15 085 m³

KARAKTERISTIKE ULAZA:
3 x 5 m

HIDROGEOLOŠKA KARAKTERISTIKA:
Stajno potopljena

HIDROLOŠKA FUNKCIJA:
Izvor, protočni

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Velika perspektiva u dubinu i prema izvoru Robinson te u suhom dijelu

OBJEKT ISTRAŽILI:
SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

NAPOMENA:
Prikupljanje faune, fotografiranje i snimanje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA:
Izvor Duboka Ljuta

ŽEMLJOPISNA KARTA (1:25000):
625-3-4

LOKALITET:
Plat, Župa dubrovačka

TOČNOST POLOŽAJA:
GPS

KOORDINATE
X = Koordinate se nalaze
Y = u bazama podataka
Z = speleoloških društava.

PRISTUP:
Izvor se nalazi uz obalu, u blizini Kaverne, a do njega se dolazi kroz kompleks HEP-a.

VRSTA:
Izvor

DUBINA:
- m

MORFOLOŠKI TIP:
Jednostavan

DULJINA:
m

VRTIKALNA RAZLIKA:

KARAKTERISTIKE ULAZA:
Voda u izvoru dolazi kroz nekoliko pukotina.

HIDROGEOLOŠKA KARAKTERISTIKA:
Stalno potopljen

HIDROLOŠKA FUNKCIJA:
Izvor

PERSPEKTIVE DALJNIH ISTRAŽIVANJA:
Nema

POLOŽAJ I OPIS OBJEKTA:
U jednom od mjesta prodiranja vode kroz podzemlje uočena je, među kamenjem, pukotina koja vodi u malo veći prostor. Nakon pomicanja kamenja utvrđeno je da prostor nije dovoljno velik da bi ronici mogli zaroniti te da perspektiva daljnjeg istraživanja ne postoji.

OBJEKT ISTRAŽILI:
SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica

NAPOMENA:
Prikupljanje faune, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Izvor Smokovijenac</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>625-3-4</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Plat, Župa dubrovačka</td>
</tr>
<tr>
<td>X =</td>
<td>Koordinate se nalaze</td>
</tr>
<tr>
<td>Y =</td>
<td>u bazama podataka</td>
</tr>
<tr>
<td>Z =</td>
<td>speleoloških društava.</td>
</tr>
<tr>
<td>BROJ PLOČICE :</td>
<td>1 x 5 m</td>
</tr>
<tr>
<td>VERTIKALNA RAZLIKA :</td>
<td>0,5 m</td>
</tr>
<tr>
<td>VOLUMEN:</td>
<td>12 m³</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**

Objekt je mali izvor špilja horizontalne duljine 6,5 m s najdubljom točkom od 0,5 m. U špilji je vidljiv mali tok koji nestaje u kršlju i pojavljuje se na ulazu u špilju, u podnožju betoniranog zida. U odnosu na špiljski ulaz, kanal odlazi u suženje neprolazno za čovjeka. Tlo je kamenito, sedimenta gotovo nema. Ronjenje u izvoru nije moguće.

**PRISTUP:**

Na ulazu u mjesto Plat krene se od same magistrale oko 5 metara prema sjeveru. Špilja se nalazi na lijevoj stani ceste Dubrovnik-Cavtat. Orijentir je mali most pod kojim teče potok koji izvire iz te špilje.

**VRSTA :** Izvor špilja

**MORFOLOŠKI TIP :** Jednostavan

**DUBINA :** - 0,5 m

**DULJINA :** 6,8 m

**VERTIKALNA RAZLIKA :** 0,5 m

**KARAKTERISTIKE ULAZA :** 1 x 5 m

**HIDROGEOLOŠKA KARAKTERISTIKA :** S prokapnicom

**HIDROLOŠKA FUNKCIJA :** Izvor

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA :** Nema

**OBJEKT ISTRAŽILI :**

SO HPD Željezničar, SD Dula Medvedica

**NAPOMENA :**

Fotografiranje prostora i istraživanja, sakupljen sediment za puževe.
**KATASTARSKI LIST**
**SPELEOLOŠKOG OBJEKTA**

**IME OBJEKTA:** Krovačka špilja

**ZEMLJOPISNA KARTA (1:25000):** 625-3-1

**LOKALITET:** Osojnik, Dubrovnik

**POLOŽAJ I OPIS OBJEKTA:**
Špilja se nalazi u blizini državne granice s Bosnom i Hercegovinom. Na ulazu je zanimljiv zid, a pod pokraj zida izgleda kao da je popločen. Nađena je i keramika. Špilja se sastoji od jednog kanala duljine 43 m.

**PRISTUP:**
Cestom Mokošica - Osojnik doći do Osojnika i od tamo prema granici. 100 m prije prijevoja krenuti stazom uz brdo prema koordinatama.

**VRSTA:** Špilja

**MORFOLOŠKI TIP:** Jednostavan

**DUBINA:** 9 m

**VERTIKALNA RAZLIKA:** 9 m

**DULJINA:** 43 m

**VOLUMEN:** 492 m³

**KARAKTERISTIKE ULAZA:** Špiljski ulaz

**HIDROGEOLOŠKA KARAKTERISTIKA:** Špilja je povremenom prokapnicom

**HIDROLOŠKA FUNKCIJA:**

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:** Nema

**OBJEKT ISTRAŽILI:** AdIPA, HBSD, SK Ursus spelaes

**NAPOMENA:**
Sakupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
IZRAŽIVANJE ŠPIJLJSKIH STANIŠTA I IZVORIŠNIH PODRUČJA ŠIREG DUBROVAČKOG PODRUČJA S CILJEM VREDNOVANJA BIORAZNOLIKOSTI I OCJENA PRIHVATLJIVOSTI
IZGRADNJE HIDROENERGETSKIH OBJEKATA

KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA:
Predpeč

ZEMLJOPISNA KARTA (1:25000):
625-3-1

LOKALITET:
Osojnik, Dubrovnik

POLOŽAJ I OPIS OBJEKTA:

VRSTA:
Špilja

DUBINA:
-1 m

DULJINA:
11 m

VOLUMEN:
46,8 m³

KARAKTERISTIKE ULAZA:
Špiljski ulaz

VERTIKALNA RAZLIKA:
1 m

KATASTARSKI LIST SPELEOLOŠKOG OBJEKTA

REDNI BROJ: 89

BROJ PLOČICE: 042-093

POLOŽAJ I OPIS OBJEKTA:

Cesta kreće od zadnje kuće u Osojniku, stari kameni put pored crkve i groblja. Nakon sat vremena se na prvom većem križanju skreće lijevo. Ići uz južni bok dolca, putem do prijevoja pa do drugog dolca te prema koordinatama do špilje.

VRSTA:
Špilja

MORFOLOŠKI TIP:
Jednostavan

DUBINA:
-1 m

DULJINA:
11 m

VERTIKALNA RAZLIKA:
1 m

KARAKTERISTIKE ULAZA:
Špiljski ulaz

HIDROGEOLOŠKA KARAKTERISTIKA:
Suh

HIDROLOŠKA FUNKCIJA:
Bez funkcije

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
HBSD, ADIPA, Geonatura, SO HPK Sv. Mihovil, SD Karlovac

NAPOMENA:
Šakupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara, Chiroptera
IME OBJEKTA: Šolkina jama

ZEMLJOPISNA KARTA (1:25000): 624-1-2

LOKALITET: Kopren do, Vidonje, Zažablje

TOČNOST POLOŢAJA: GPS

POLOŢAJ I OPIS OBJEKTA:

PRISTUP:
Od kraja sela Goračići oko 400 m prema državnoj granici s BiH. Putem uz suhozid i onda nakon 350 m skrenuti lijevo. Prema GPS koordinatama.

VRSTA: Špilja

MORFOLOŠKI TIP: Razveden

DUBINA: -6 m

VERTIKALNA RAZLIKA: 6 m

DULJINA: 41 m

VOLUMEN: 540 m³

KARAKTERISTIKE ULAZA:

Špiljski ulaz

HIDROGEOLOŠKA KARAKTERISTIKA:

HIDROLOŠKA FUNKCIJA:

PERSPEKTIVE DALJNJIH ISTRAŢIVANJA:

Nema

OBJEKT ISTRAŢILI:

SD Špiljar, ADIPA, SK Ursus spelaeus

NAPOMENA:

Šakupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTARSKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Špilja iznad Kopren dola

ZEMLJOPISNA KARTA (1:25000): 624-1-2

LOKALITET: Vidonje, Zažablje

POLOŽAJ I OPIS OBJEKTA:
Jamski ulaz, vertikala od oko 8 m. Velika dvorana koja je podijeljena na dva dijela. Drugi dio je veći i završava zaravnanjem te siparom u plus.

DABRA, SD Špiljar

Sakupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.

VRSTA: Špilja

DUBINA: -15 m

DULJINA: 98 m

VERTIKALNA RAZLIKA: 15 m

VOLUMEN: 6875 m³

KARAKTERISTIKE ULAZA:
Jamski ulaz

HIDROGEOLOŠKA KARAKTERISTIKA:

HIDROGEOLOŠKA FUNKCIJA:

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:

PRISTUP:
Auto ostaviti kod crkvice Sv.Liberana prije Vidonja i krenuti po stazi u pravcu Mliništa. Kad se dođe do drugog dolca (Kopren do) u dnu kojeg su dvije kuće, od tih kuća krenuti direktno uzbrdo po slabo vidljivoj stazici označenoj slabo vidljivim strelcama. Stazicom se u pravcu juga popne direktno do jamskog ulaza.

OBJEKT ISTRAŽILI:
ADIPA, SD Špiljar

NAPOMENA:
Šakupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Vilenška peć</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>624-2-4</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Gumanca, Slano, Dubrovačko primorje</td>
</tr>
<tr>
<td>BROJ PLOČICE:</td>
<td>042-111</td>
</tr>
<tr>
<td>ZAĐA POLOŽAJA:</td>
<td>GPS</td>
</tr>
</tbody>
</table>

**POLOŽAJ I OPIS OBJEKTA:**

Špilja se sastoji od jednog kanala koji nakon 30 m od ulaza zakreće desno pod kutem od oko 90°. Ukupna duljina špilje je 44 m.

**VRSTA:** Špilja
**DUBINA:** -6 m
**VERTIKALNA RAZLIKA:** 6 m
**DULJINA:** 44 m
**VOLUMEN:** 264 m³

**KARAKTERISTIKE ULAZA:**

Špiljski ulaz

**KARAKTERISTIKA ULAZA:**

Suh

**HIDROGEOLOŠKA FUNKCIJA:**

Bez funkcije

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:**

-

**OBJEKAT ISTRAŽILI:**

AĐIPA, HBSD, SO PD Dubrovac

**NAPOMENA:**

Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
KATASTARKI LIST
SPELEOLOŠKOG OBJEKTA

IME OBJEKTA: Vištičina jama
ZEMLJOPISNA KARTA (1:25000): 624-1-1
LOKALITET: Dukat, Opuzen, Slivno

VRSTA: Jama
DUBINA: - 144 m
DULJINA: 322 m
VOLUMEN: 45 025 m³

KILOTOMSKA RAZLIKA: Vištičina jama karakterizira veliki ulaz dimenzija 20x20m i vertikalni kanal dubine 80 m koji se zatim dijeli u dva kanala. Jedan kanal je uzaludni i prekriven je guanom, a u cijeloj njegovoj duljini od 50m nalaze se šišmiši. Drugi kanal nastavlja se strmo i spušta sve do najniže točke jame (-144m). U jami na početku ovog kanala (pri vrhu sipara) pronađena su minsko-eksplozivna sredstva (ručna bomba). Dno kanala prekriveno je kršljem, a na dnu jame je jezero s vodom (5x10m). Oba kanala visine su oko 10m, a prosječna širina jame je 20m.

OBJEKT ISTRAŽILI: ADIPA, Geonatura, SO HPD Željezničar, HBSD, HPM, SO HPK Sv. Mihovil, Dinaridi DISKF, SO HPS Velebit

NAPOMENA: Sakupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara, Chiroptera
**IME OBJEKTA:** Šipun špilja

**ZEMLJOPISNA KARTA (1:25000):**

**LOKALITET:** Cavtat, Konavle

**TOČNOST POLOŽAJA:** GPS

**POLOŽAJ I OPIS OBJEKTA:**
Špilja se sastoji od dva kanala od čega je jedan potopljen. Izuzetno je bogata nalazima podzemnih životinja. Duljina špilje je 90 metara.

**PRISTUP:**
Do ulaza se može doći iz centra grada Cavtata šetnicom uz more.

**VRSTA:** Špilja
**MORFOLOŠKI TIP:** Razveden

**DUBINA:** - 20 m

**VERTIKALNA RAZLIKA:** 20 m

**DULJINA:** 90 m

**VOLUMEN:** 3480 m³

**KARAKTERISTIKE ULAZA:** 2 x 1,5 m

**HIDROGEOLOŠKA KARAKTERISTIKA:** Dijelom potopljen (jedan kanal stalno potopljen)

**HIDROLOŠKA FUNKCIJA:** Anhialina

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:** Nema

**OBJEKT ISTRAŽILI:**
ADIPA, Geonatura, HBSD, SO HPD Željezničar, Breganja, DIK Freatik, SD Đula Medvedica, Dinaridi DISKF

**NAPOMENA:**
Sakupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**IME OBJEKTA:** Izvor u selu Duba Konavoska  

**ŽEMLJOPISNA KARTA (1:25000):** 625-4-3  

**LOKALITET:** Duba Konavoska, Konavle  

**BROJ PLOČICE:**  

**REDNI BROJ:** 95  

**VRSTA:** Izvor  

**DULJINA:** m  

**DUBINA:** m  

**VERTIKALNA RAZLIKA:** m  

**VOLUMEN:** m³  

**TOČNOST POLOŽAJA:** GPS  

**KARAKTERISTIKE ULAZA:**  

**KATASTARSKI LIST**  

**SPELEOLOŠKOG OBJEKTA**  

**POLOŽAJ I OPIS OBJEKTA:**  


**PRISTUP:**  

Izvor se nalazi u mjestu Duba Konavoska. Kod crkve se nastavlja glavnom cestom uzbrdo. Izvor se nalazi pored ceste.  

**OBRAZAC DUBLJINE:** 0,2 x 0,3 m  

**VODA:**  

**HIDROGEOLOŠKA KARAKTERISTIKA :**  

**HIDROGEOLOŠKA FUNKCIJA:** Stalan tok  

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:** Nema  

**OBJEKT ISTRAŽILI :**  

SO HPD Željezničar, Breganja, DIK Freatik, SD Dula Medvedica  

**NAPOMENA :**  

Sakupljanje faune, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Izvor Ljuta</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>625-4-4</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Ljuta, Konavski dvori, Konavle</td>
</tr>
<tr>
<td>POLOŽAJ I OPIS OBJEKTA:</td>
<td>Voda izvire na više mjesta iz pukotina među stijenama.</td>
</tr>
</tbody>
</table>

**PRISTUP:**

Izvor se nalazi u Konavskom polju. Cestom se ide prema Grudama, Konavskim dvorima do sela Ljuta. U selu postoje putokazi prema izvoru.

**VRSTA:** Izvor

**MORFOLOŠKI TIP:** Kontaktni izvor

**DUBINA:** - m

**DULJINA:** - m

**VERTIKALNA RAZLIKA:** - m

**VOLUMEN:** - m³

**KARAKTERISTIKE ULAZA:** -

**HIDROGEOLOŠKA KARAKTERISTIKA:** Stalan tok

**HIDROLOŠKA FUNKCIJA:** Izvor

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:** Nema

**OBJEKT ISTRAŽILI:**

SO HPD Zeljježičar, Breganja, DIK Freatik, SD Dula Medvedica

**NAPOMENA:**

Sakupljanje faune, fotografiranje i snimanje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTDA**

<table>
<thead>
<tr>
<th>IME OBJEKTDA:</th>
<th>Izvor između Točionika i Lisca</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ZEMLJOPISNA KARTA (1:25000):</th>
<th>624-2-3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LOKALITET:</th>
<th>Točionik, Dubrovačko primorje</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LOŽNOST POLOŽAJA:</th>
<th>GPS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>REDNI BROJ:</th>
<th>97</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>BROJ PLOČICE:</th>
<th></th>
</tr>
</thead>
</table>

**POLOŽAJ I OPIS OBJEKTDA:**

Betoniarni ulaz veličine 2 x 1,5 m, dubina vode oko 1 m.

**PRISTUP:**

Izvor je u mjestu Lisac, odmah uz cestu, pokraj gusterne.

**VRSTA:** Izvor

**MORFOLOŠKI TIP:** Jednostavan

<table>
<thead>
<tr>
<th>DULJINA:</th>
<th>6 m</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>VOLUMEN:</th>
<th>36 m³</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>KARAKTERISTIKE ULAZA:</th>
<th>2 x 1,5 m</th>
</tr>
</thead>
</table>

| HIDROGEOLOŠKA KARAKTERISTIKA: | Stalno potopljena |

| HIDROLOŠKA FUNKCIJA: | Izvor |

| PERSPEKTIVE DALJNJIH ISTRAŽIVANJA: | Nema |

**OBJEKT ISTRAŽILI:**

ADIPA, Geonatura, SO HPK Sv. Mihovil, SD Karlovac, SO HPD Željezničar, SO PD Dubovac, SO HPD Željezničar

**NAPOMENA:**

Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara, Chiroptera
IME OBJEKTA:
Durovića jama

ZEMLJOPISNA KARTA (1:25000):
625-4-3

LOKALITET:
Zračna luka Čilipi, Konavle

TOČNOST POLOŽAJA:
GPS

POLOŽAJ I OPIS OBJEKTA:
T uristički uređena špilja na području zračne luke Čilipi. Duljina špilje iznosi 82 m.

PRISTUP:
Parkirati na parkiralištu zračne luke Čilipi i od tamo iditi do špilje koja je turistički uređena i nalazi se na području zračne luke.

VRSTA:
Špilja

MORFOLOŠKI TIP:
Razveden

DUBINA:
- 25 m

VERTIKALNA RAZLIKA:
25 m

DULJINA:
82 m

VOLUMEN:
7950 m³

KARAKTERISTIKE ULAZA:
Turistički uređen ulaz

HIDROGEOLOŠKA KARAKTERISTIKA:
S prokapnicom

HIDROLOŠKA FUNKCIJA:

PERSPEKTIVE DALJINIH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
ADIPA, Geonatura, SO HPD Željezničar, SO PD Dubovac, SO HPD Željezničar, Dinaridi DISKF, SK Ursus speleaus

NAPOMENA:
Sakupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
# KATASTARSKI LIST SPELEOLOŠKOG OBJEKTA

**IME OBJEKTA:** Komjatuša jama

**ZЕMLJOPИSNA KАRTA (1:25000):** 624-1-2

**LOKALITET:** Vidonje, Zažablje

**PRISTUP:**
Proći pokraj crkvica i groblja u Vidonjama te nakon 500 m parkirati kod male kapelice koja se nalazi s lijeve strane ceste. Prema koordinatama pratiti utabanu stazu. Potrebno je oko 1 sat hoda do ulaza. Veliki ulaz, lako uočljiv.

**VRSTA:** Jama

**MORFOLOŠKI TIP:** Razveden

**DUBINA:** -110 m

**DULJINA:** 145 m

**VERTIKALNA RAZLIKA:** 110 m

**VOLUMEN:** 18 650 m³

**KARAKTERISTIKE ULAZA:** 15 x 15 m

**HIDROGEOLOŠKA KARAKTERISTIKA:** Tanak film vode cijedi se niz stijenu

**HIDROLOŠKA FUNKCIJA:**-

**POŠRIVANJE USKE PUKTINE U LIJEVOM KRAKU S DESNE STRANE SIPARA:**

**POLOŽAJ I OPIS OBJEKTA:** Ulazna vertikala duljine 80 m jako je krušljiva i opasna. Nakon nje slijedi sipar koji je prolazan bez užeta. Dubina Jame iznosi 110 metara.

**OBJEKT ISTRAŽILI:**
SO PDS "Velebit", ADIPA, Geonatura, SO HPD Željezničar, SD Karlovac, SO PD Dubovac

**NAPOMENA:**
Sakupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**
**SPELEOLOŠKOG OBJEKTA**

**IME OBJEKTA:** Lokva Vidohovo

**ZEMLJOPISNA KARTA (1:25000):** 623-2-1

**LOKALITET:** Trpanj, Donja Banda, Orebić

**REDNI BROJ :** 100

**BROJ PLOČICE :**

**TOČNOST POLOŽAJA:** GPS

**POLOŽAJ I OPIS OBJEKTA:**
Lokva duljine 12 m, dubine 80 cm. S desne strane na kraju lokve nalazi se zid visine oko 1,8 m. Iza tog zida ima još oko 5 m zemlje.

**PRISTUP:**
Od skretanja za Trpanj 800 m prema Orebiću i stati na ugibalište s lijeve strane. Ugibalište je do lokve udaljeno oko 200 m.

**VRSTA:** Izvor

**MORFOLOŠKI TIP:** Jednostavan

**DUBINA:** - m

**DULJINA:** m

**VERTIKALNA RAZLIKA:** m

**VOLUMEN:** m³

**KARAKTERISTIKE ULAZA:**

**HIDROGEOLOŠKA KARAKTERISTIKA:**

**HIDROLOŠKA FUNKCIJA:** Izvor

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:** Nema

**OBJEKT ISTRAŽILI :**
ADIPA, SK Ursus speleaus, Dinaridi DISKF

**NAPOMENA :**
Prikupljanje faune, fotografiranje prostora i istraživanja.
**IME OBJEKTA:** Močiljska špilja
**ZEMLJOPISNA KARTA (1:25000):** 625-3-1
**LOKALITET:** Osojnik, Dubrovnik

**POLOŢAJ I OPIS OBJEKTA:**

Ulaz u špilju nalazi se na JI padini Močiljskog brda, oko 140 metara ispod vrha Močinje, po kojem je dobila ime. Kod ulaza u špilju raste velika smokva, Močiljska špilja je morfološki relativno jednostavne građe. Predstavlja jedan glavni kosi kanal koji se spušta od ulaza prema kraju špilje od kojeg se odvaja desetak sporednih kanala. U njoj nema većih špiljskih dvorana. Ulaz je širok 5 metara, a visok 2,5 metra. U ulaznom dijelu sigovina je prilično devastirana i razlupana.

**POČETNI BROJ OBJEKTA:** 042-099
**REDNI BROJ:** 101
**BROJ PLOČICE:** 042-099

**KATASTARSKI LIST**

**VRSTA:** Špilja
**DUBINA:** -138 m
**VERTIKALNA RAZLIKA:** 138 m
**DULJINA:** 938 m
**VOLUMEN:** 10661m³

**KARAKTERISTIKE ULAZA:** Zaključan špiljski ulaz (metalna ograda), 2 x 2 m

**HIDROGEOLOŠKA KARAKTERISTIKA:**
**HIDROGEOLOŠKA FUNKCIJA:** Akumulacija

**PERSPEKTIVE DALJNJIH ISTRAŢIVANJA:** Ima

**NAPOMENA:**
Prikupljanje faune i gljiva, fotografiranje prostora i istraţivanja, mjerenje mikroklimatskih parametara.
IME OBJEKTA: Izvor Žeginjac

ZEMLJOPISNA KARTA (1:25000): 625-3-2

LOKALITET: Petrača, Kupari, Župa dubrovačka

POLOŽAJ I OPIS OBJEKTA:
Za vrijeme Austrougarske, vojska je ozidala izvor. Vodostaj varira 1 - 1,5 m.

PRISTUP:
Na Jadranjskoj magistrali između mjesta Srebreno i Milini skrenuti lijevo prema mjestu Petrača. Voziti cestom oko 300 m poslije mjesta Petrača, s desne strane oko 200 m od ceste nalazi se izvor. Ići po koordinatama.

VRSTA: Izvor
MORFOLOŠKI TIP: Jednostavan
DUBINA: - m
VERTIKALNA RAZLIKA: m
DULJINA: m
VOLUMEN: m³

KARAKTERISTIKE ULAZA:

HIDROGEOLOŠKA KARAKTERISTIKA:

HIDROLOŠKA FUNKCIJA: Izvor

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA: Nema

OBJEKT ISTRAŽILI:
SO HPD Zeležničar, Breganja, DIK Freatik, SD Dula Medvedica

NAPOMENA:
Mjerenje mikroklimatskih parametara.
### KATASTARSKI LIST
#### SPELEOLOŠKOG OBJEKTA

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Japaga iznad Kopren dola</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>624-1-2</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Vidonje, Zažablje</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BROJ PLOČICE:</th>
<th></th>
</tr>
</thead>
</table>

| REDNI BROJ: | 103 |

| X = | Koordinate se nalaze |
| Y = | u bazama podataka |
| Z = | speleoloških društava. |

| TOČNOST POLOŽAJA: | GPS |

#### POLOŽAJ I OPIS OBJEKTA:
Jama je dubine 8 m na najvišem rubu i 5 m na najnižem. Na dnu raste vegetacija i nema nastavka u špiljski kanal.

#### PRISTUP:
Gestom za Vidonje, parkirati čim se popne do crkvice Sv. Liberana. Staza počinje nasuprot crkvice u pravcu JZ. Ona se račva u jednu donju koja ide za dolac i jednu lijevu koja ga okružuje i po kojoj treba ići i doći s južne strane dolca. Kad se dođe na oko 280 m od špilje, treba se bez staze popeti uzbrdo po teško prohodnoj strmini do šumice na vrhu brijega i ulaza u jamu koji se nalazi iznad drugog, južnijeg dolca.

<table>
<thead>
<tr>
<th>VRSTA:</th>
<th>Jama</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORFOLOŠKI TIP:</td>
<td>Jednostavan</td>
</tr>
<tr>
<td>DUBINA:</td>
<td>-8 m</td>
</tr>
<tr>
<td>DULJINA:</td>
<td>10 m</td>
</tr>
<tr>
<td>VOLUMEN:</td>
<td>m³</td>
</tr>
<tr>
<td>VERTIKALNA RAZLIKA:</td>
<td>8 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KARAKTERISTIKE ULAZA:</th>
<th>Jamski ulaz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HIDROGEOLOŠKA KARAKTERISTIKA:</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HIDROLOŠKA FUNKCIJA:</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PERSPEKTIVE DALJNIH ISTRAŽIVANJA:</th>
<th>Nema</th>
</tr>
</thead>
</table>

| OBJEKT ISTRAŽILI: | ADIPA, Dinaridi DISKF |

| NAPOMENA: | Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara. |
**IME OBJEKTA:** Špilja Jezero  
**ŽEMLJOPISNA KARTA (1:25000):** 625-4-3  
**LOKALITET:** Snježnica, Konavle  

**IME OBJEKTA:** Špilja Jezero  
**ŽEMLJOPISNA KARTA (1:25000):** 625-4-3  
**LOKALITET:** Snježnica, Konavle  

**X =** Koordinate se nalaze u bazama podataka speleoloških društava.  
**Y =**  
**Z =**  

**TOČNOST POLOŽAJA:** GPS  

**POLOŽAJ I OPIS OBJEKTA:** Veliki špiljski ulaz okružen je drvećem i zelenilom. Špilja se sastoji od dvije velike dvorane. U ulaznu dvoranu dopire svjetlost iz špiljskog i jamskog ulaza. U špilji se nalazi jezero. Duljina špilje iznosi 120 m.  

**Pristup:** Parkirati u Dubi Konavoskoj pokraj crkvice i groblja. Staza se najprije penje u smjeru JZ, onda zakreće u pravcu I do odvojka za ledenice, pa na S preko prijevoja u udolinu iz koje se penje oko 100 metara do ulaza u špilju Jezero. Put je označen skroz do špilje.  

**VRSTA:** Špilja  
**DUBINA:** -47 m  
**VERTIKALNA RAZLIKA:** 47 m  

**MORFOLOŠKI TIP:** Razveden  
**DULJINA:** 120 m  
**VOLUMEN:** 14 300 m³  

**KARAKTERISTIKE ULAZA:** Špiljski i jamski ulaz  

**HIDROGEOLOŠKA KARAKTERISTIKA:**  

**HIDROLOŠKA FUNKCIJA:** Akumulacija  

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:** Proširivanje suženja u meandru  

**OBJEKT ISTRAŽILI:** ADIPA, Geonatura, HBSD, SO HPD Željezničar, SK Ursus spelaeus  

**NAPOMENA:** Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**
**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Šumperača špilja velika</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>X = Koordinate se nalaze u bazama podataka speleoloških društava.</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Mokošica, Dubrovnik</td>
</tr>
</tbody>
</table>

**TOČNOST POLOŽAJA:** GPS

**POLOŽAJ I OPIS OBJEKTA:**
Dva špiljska ulaza uz cestu. Špilja dubine 2 metra i duljine 111 metara.

**PRISTUP:**
Špiljski ulazi se nalaze na ulazu u Mokošicu (od strane Dubrovačkog mosta) lijevo uz cestu.

**VRSTA:** Špilja
**MORFOLOŠKI TIP:** Razveden
**DUBINA:** 2 m
**VERTIKALNA RAZLIKA:** 2 m
**DULJINA:** 111 m
**VOLUMEN:** 180 m³

**KARAKTERISTIKE ULAZA:**
Dva špiljska ulaza

**HIDROGEOLOŠKA KARAKTERISTIKA:**

**HIDROLOŠKA FUNKCIJA:** Akumulacija

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:**

**OBJEKT ISTRAŽILI:**
HBSD

**NAPOMENA:**
Prikupljanje faune, fotografiranje prostora i istraživanja
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>Spejaturica</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>624-2-3</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>Lisačke Rudine, Dubrovačko primorje</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REDNI BROJ:</th>
<th>106</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROJ PLOČICE:</td>
<td>042-094</td>
</tr>
</tbody>
</table>

| X =            | Koordinate se nalaze |
| Y =            | u bazama podataka |
| Z =            | speleoloških društava. |

<table>
<thead>
<tr>
<th>POLOŢAJ I OPIS OBJEKTA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veliki lako uočljiv ulaz oko 10 x 10 m.</td>
</tr>
</tbody>
</table>
Nakon ulazne vertikale od 10 metara slijedi dvorana kojom se koso spušta. Duljina jame iznosi 40 m dok je dubina 22 m.

**POLOŢAJ I OPIS OBJEKTA:**

| VOLUMEN: | 1400 m³ |

**KRATASTORSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

| TOČNOST POLOŢAJA: | GPS |

**PRISTUP:**

S Jadranjske magistrale Slano - Banići oko 700 m nakon mjesta Slano skrenuti desno prema Čepikućama. Na drugom Y raskrižju (nakon Trnove) skrenuti lijevo i voziti oko 5 km te skrenuti prema mjestu Lisac. 500 metara poslije skretanja za Lisac s lijeve strane je makadamski put. Po njemu doći do kamene ograde, parkirati auto i po koordinatama ići do ulaza.

**VRSTA:**

<table>
<thead>
<tr>
<th>Jama</th>
<th>DUBINA:</th>
<th>DULJINA:</th>
<th>VERTIKALNA RAZLIKA:</th>
<th>VOLUMEN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostavan</td>
<td>-22 m</td>
<td>40 m</td>
<td>22 m</td>
<td>1400 m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MORFOLOŠKI TIP:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostavan</td>
</tr>
</tbody>
</table>

**HIDROGEOLOŠKA KARAKTERISTIKA :**

**HIDROLOŠKA FUNKCIJA :**

**PERSPEKTIVE DALJINJIH ISTRAŢIVANJA :**

**OBJEKT ISTRAŢILI :**

| HBSD, Dinandi DISKF |

**NAPOMENA :**

Prikupljanje faune, fotografiranje prostora i istraživanja
Špilja kod Majkova u flišu

**IME OBJEKTA:**

**ŽEMLJOPISNA KARTA (1:25000):**

**LOKALITET:**

Majkovi, Dubrovačko primorje

**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTADA**

**VRSTA:** Špilja

**MORFOLOŠKI TIP:** Jednostavan

**VOLUMEN:**


**HIDROGEOLOŠKA KARAKTERISTIKA :**

**HIDROGEOLOŠKA FUNKCIJA :**

**VRSTA :** Špilja

**DUBINA :** - m

**DULJINA :** m

**VERTIKALNA RAZLIKA :** m

**VOLUMEN :** m³

**POLOŽAJ I OPIS OBJEKTA:**

Špilja se nalazi iza kuće u stijeni, iskopana je prilikom radova.

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA :**

**OBJEKT ISTRAŽILI :**

**NAPOMENA :**

---

**PRISTUP:**

Na Jadranjskoj magistrali Slano - Banici skrenuti oko 700 m nakon mjesta Slano prema Vjetrenici i na raskrižju odmah desno za Majkove. Špilja se načini kod 3. kuće s lijeve strane ceste.

---

**POLOŢAJ I OPIS OBJEKTA:**

Koordinate se nalaze u bazama podataka speleoloških društava.

**VOJAN**
IME OBJEKTA: Špilja na vrh Toraca
ZEMLJOPISNA KARŢA (1:25000): 625-3-1
LOKALITET: Orašac, Dubrovnik
IME OBJEKTA: Špilja na vrh Toraca
ZEMLJOPISNA KARŢA (1:25000): 625-3-1
LOKALITET: Orašac, Dubrovnik

POLOŻAJ I OPIS OBJEKTA:
Na ulazu u špilju nalazi se drvo i ulaz je neugledan. Duljina špilje iznosi 65 m dok je dubina 17 m

PRISTUP:
Ide se cestom Orašac-Ljubač do oštrog lijevog zavoja u šumi. Tu parkirati i po slabo vidljivoj stazi krenuti na vrh Toraca. Dođe se do malog gaja od hrasta pa odmah nakon njega na istok oko 10 m. Ide se stazom do ulaza kraj kojeg se nalazi drvo.

VRSTA: Špilja
MORFOLOŠKI TIP: Razveden
DUBINA: -17 m
VERTIKALNA RAZLIKA: 17 m
DULJINA: 65 m
VOLUMEN: 1780 m³

KARAKTERISTIKE ULAZA:
Špiljski ulaz

HIDROGEOLOŠKA FUNKCIJA:

PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

**IME OBJEKTA:** Špilja za Gromačkom vlakom  
**ZEMLJOPISNA KARTA (1:25000):** 625-3-1  
**LOKALITET:** Gromača, Dubrovnik  

**TOČNOST POLOŢAJA:** GPS

**REDNI BROJ:** 109  
**BROJ PLOČICE:** 05-302

**POLOŢAJ I OPIS OBJEKTA:**

Kompleksan speleološki objekt, razgranat s više etaža. Već se u ulaznoj dvorani špilja razdvaja na dva dijela špilje.

**PRISTUP:**

U mjestu Orašac na Jadranskoj magistrali potrebno je skrenuti na selo Gromača. Od sela Gromača krene se novoprobijenom pristupnom cestom koja nakon oko 300 m siječe stari put u brdu. Nastavi se starim putem i na oko 650 m zračne udaljenosti od špilje odvaja se slubi put u lijevo koji vodi do dolaca. Prođu se prvi dolci po desnom rubu, zatim preko malog prijevoja do sljedećih dolaca gdje je špilja. Od sela do špilje je oko sat vremena hoda i put je označen plavim markacijama.

**VRSTA:** Špilja  
**MORFOLOŠKI TIP:** Razveden  
**DUBINA:** -220 m  
**DULJINA:** 2407 m  
**VERTIKALNA RAZLIKA:** 220 m  
**VOLUMEN:** 83338 m³

**KARAKTERISTIKE ULaza:**

- Zaključan špiljski ulaz s malim skokom, 1 x 3 m

**HIDROGEOLOŠKA KARAKTERISTIKA:**

- Š nakapnicama i prokapnicama

**HIDROLOŠKA FUNKCIJA:**

Protočni

**PERSPEKTIVE DALJNJIH ISTRAŢIVANJA:**

Ima

**OBJEKT ISTRAŢILI:**

- SO PDS "Velebit", ADIPA, Geonatura, HBSD, SO HPĐ Željezničar, SO Sv. Mihovil, SD Karlovac, SK Ursus spelaeus, SO PD Dubovac

**NAPOMENA:**

Prikupljanje faune i gljiva, fotografiranje prostora i istraţivanja, mjerenje mikroklimatskih parametara.
**IME OBJEKTA:**

Vranja peć

**ZEMLJOPISNA KARTA (1:25000):**

624-2-3

**LOKALITET:**

Točionik, Dubrovačko primorje

**TOČNOST POLOŢAJA:**

GPS

**POLOŢAJ I OPIS OBJEKTA:**

Ulaž je dimenzija 0,5 x 1 m, nakon kojeg slijedi skok od 5 m te se špiljski kanal nastavlja spuštati u dubinu. Špilja je lijepo zasigana.

**PRISTUP:**

Iz smjera Slano za Čepikuće, prije Čepikuća skrenuti lijevo za Lisac. Nakon skretanja vožiti oko 1,5 km i skrenuti desno za Točionik. Ići do prve kuće s lijeva i tamo parkirati. Nastaviti pješke od kuće po koordinatama.

**VRSTA :** Špilja

**MORFOLOŠKI TIP :** Razvijen

**DUBLINA :** -50 m

**VERTIKALNA RAZLIKA :** 50 m

**VOLUMEN :** 14 560 m³

**KARAKTERISTIKE ULAZA :** Jamski ulaz 0,5 x 1 m

**HIDROGEOLOŠKA KARAKTERISTIKA :** Š nakapnicom

**HIDROLOŠKA FUNKCIJA :**

**PERSPEKTIVE DALJNJIH ISTRAŢIVANJA :**

**NAPOMENA :**

Prikupljanje faune i gljiva, fotografiranje prostora i istraţivanja, mjerenje mikroklimatskih parametara.

**OBJEKT ISTRAŢILI :**

ADIPA, Geonatura, HBSD, SO Sv. Mihovil, SO HPĐ Željezničar, SK Ursus spelaeus, SO PD Dubovac, SD Karlovac
IME OBJEKTA: Zmajeva peć
ZEMLJOPISNA KARTA (1:25000): 624-2-3
LOKALITET: Čepikuće, Dubrovačko primorje

POLOŽAJ I OPIS OBJEKTA:
Špilja ima tri ulaza od kojih su dva (južni i zapadni) prolazna za čovjeka dok je jedan (istočni) uzak. Špilja ima dvije etaže koje su međusobno spojene skokom od 4 m.

POLJAZ I OPIS OBJEKTA:
Špilja ima tri ulaza od kojih su dva (južni i zapadni) prolazna za čovjeka dok je jedan (istočni) uzak. Špilja ima dvije etaže koje su međusobno spojene skokom od 4 m.

PRISTUP:
Od zadnje kuće u Čepikućama, oko 300 m prije granice uzbrdo po koordinatama. Proći brdo Štrbina i doći na idući vrh na kojem je ulaz u špilju.

VRSTA: Špilja
MORFOLOŠKI TIP: Razveden
DUBINA: -15 m
VERTIKALNA RAZLIKA: 15 m
VOLUMEN: 350 m³
KARAKTERISTIKE ULaza:
Tri ulaza: južni 1 x 1 m, zapadni 1 x 1 m, istočni 0,5 x 0,5 m
HIDROGEOLOŠKA KARAKTERISTIKA:
Š prokapnicom
HIDROLOŠKA FUNKCIJA:
Bez funkcije
PERSPEKTIVE DALJNJIH ISTRAŽIVANJA:
Nema

OBJEKT ISTRAŽILI:
Geonatura, SO HPK Sv. Mihovil, SO HPD Željezničar, SO PD Dubovac

NAPOMENA:
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara, Chiroptera.
**KATASTARSKI LIST**

**SPELEOLOŠKOG OBJEKTA**

<table>
<thead>
<tr>
<th>IME OBJEKTA:</th>
<th>VILINSKA ŠPILJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEMLJOPISNA KARTA (1:25000):</td>
<td>625-4-4</td>
</tr>
<tr>
<td>LOKALITET:</td>
<td>GRUDA, KONAVLE</td>
</tr>
<tr>
<td>X = Koordinate se nalaze u bazama podataka</td>
<td></td>
</tr>
<tr>
<td>Y = u bazama podataka</td>
<td></td>
</tr>
<tr>
<td>Z = speleoloških društava.</td>
<td></td>
</tr>
<tr>
<td>TOČNOST POLOŽAJA:</td>
<td>GPS</td>
</tr>
<tr>
<td>POLOŽAJ I OPIS OBJEKTA:</td>
<td></td>
</tr>
</tbody>
</table>

**PRISTUP:**

Od ugibališta 500 m iza Gruda, na glavnoj cesti uzbrdo. Putem se presječe trasa pruge i direktno iznad čeke kroz napušteni maslinik. Na kraju maslinik kroz šikaru zadnjih 100 m, zatim po izohipsi do špilje. Ulaz se može prepoznati po hrastu koji raste pokraj.

**VRSTA :** Špilja  
**DUBINA :** - m  
**VERTIKALNA RAZLIKA :** m  
**VERTIKALNA RAZLIKA :** m  
**DULJINA :** m  
**VOLUMEN:** m³

**KARAKTERISTIKE ULAZA :**

**HIDROGEOLOŠKA KARAKTERISTIKA :**

**HIDROLOŠKA FUNKCIJA :**

**PERSPEKTIVE DALJNJIH ISTRAŽIVANJA :**

**OBJEK蒂 ISTRAŽILI :**

**NAPOMENA :**
Prikupljanje faune i gljiva, fotografiranje prostora i istraživanja, mjerenje mikroklimatskih parametara.